Title: | Assessment of Volatile Compound Transference through Firefighter Turnout Gear |
Author(s): | Aliano-Gonzalez MJ; Montalvo G; Garcia-Ruiz C; Ferreiro-Gonzalez M; Palma M; |
Address: | "Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cadiz, The Wine and Food Research Institute IVAGRO, Puerto Real, 11510 Cadiz, Spain. Universidad de Alcala, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Ctra. Madrid-Barcelona km 33,600, 28871 Madrid, Spain. Universidad de Alcala, Instituto Universitario de Investigacion en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Madrid, Spain" |
Journal Title: | Int J Environ Res Public Health |
ISSN/ISBN: | 1660-4601 (Electronic) 1661-7827 (Print) 1660-4601 (Linking) |
Abstract: | "There is high concern about the exposure of firefighters to toxic products or carcinogens resulting from combustion during fire interventions. Firefighter turnout gear is designed to protect against immediate fire hazards but not against chemical agents. Additionally, the decontamination of firefighter personal protective equipment remains unresolved. This study evaluated the feasibility of a screening method based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) in combination with chemometrics (cluster analysis, principal component analysis, and linear discriminant analysis) for the assessment of the transference of volatile compounds through turnout gear. To achieve this, firefighter turnout gears exposed to two different fire scenes (with different combustion materials) were directly analyzed. We obtained a spectral fingerprint for turnout gears that were both exposed and non-exposed to fire scenes. The results showed that (i): the contamination of the turnout gears is different depending on the type of fire loading; and (ii) it is possible to determine if the turnout gear is free of volatile compounds. Based on the latest results, we concluded that HS-GC-IMS can be applied as a screening technique to assess the quality of turnout gear prior to a new fire intervention" |
Keywords: | *Firefighters *Fires Gas Chromatography-Mass Spectrometry Humans *Occupational Exposure/analysis Personal Protective Equipment *Volatile Organic Compounds/analysis chemometrics combustion products fire firefighter ion mobility spectrometry occupational ri; |
Notes: | "MedlineAliano-Gonzalez, Maria Jose Montalvo, Gemma Garcia-Ruiz, Carmen Ferreiro-Gonzalez, Marta Palma, Miguel eng Research Support, Non-U.S. Gov't Switzerland 2022/03/26 Int J Environ Res Public Health. 2022 Mar 19; 19(6):3663. doi: 10.3390/ijerph19063663" |