Title: | Enhancing nitrogen removal of carbon-limited municipal wastewater in step-feed biofilm batch reactor through integration of anammox |
Author(s): | Cui H; Zhang L; Zhang Q; Li X; Peng Y; Wang C; |
Address: | "National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address: pyz@bjut.edu.cn. Guangdong Shouhui Lantian Engineering and Technology Co., Ltd., Units 01 and 04, 5/F, Xingguang Yingjing Commercial Center, 117 Shuiyin Road, Yuexiu District, Guangzhou, PR China" |
DOI: | 10.1016/j.biortech.2023.129091 |
ISSN/ISBN: | 1873-2976 (Electronic) 0960-8524 (Linking) |
Abstract: | "The biological nitrogen removal of municipal wastewater was successfully improved by integrating anammox in a step-feed sequencing biofilm batch reactor. Despite fluctuating influent carbon to nitrogen ratio (1.9-5.1) and decreasing temperature (24.1-16.3 ?SG), nitrogen removal efficiency of 95.9 +/- 1.4 % and nitrogen removal rate of 0.23 +/- 0.02 kg N/(m(3).d) were successfully maintained without requirement of external carbon sources. The advanced removal performance was mainly attributed to the enhanced anammox. Anammox bacteria presented a high relative abundance (42.9% in biofilms, 1.5% in flocs) and anammox activity was as high as 5.42 +/- 0.12 mg N/(g volatile suspended solids.h). Further analysis suggested that flexible control of influent organic and ammonium through step-feeding could provide multiple substrate supply for anammox reaction, potentially resulting in stable combination of anammox with hybrid-nitrite-shunt processes. Overall, this study provides a promising anammox-related application with simple-control step-feed strategy for enhanced and stable nitrogen removal from carbon-limited municipal wastewater" |
Keywords: | *Wastewater Denitrification Nitrogen/analysis Carbon Anaerobic Ammonia Oxidation Bioreactors/microbiology Oxidation-Reduction Biofilms *Ammonium Compounds Sewage/microbiology Anammox Biological nitrogen removal Low C/N Partial denitrification Step-feed pr; |
Notes: | "MedlineCui, Huihui Zhang, Liang Zhang, Qiong Li, Xiyao Peng, Yongzhen Wang, Chuanxin eng England 2023/04/28 Bioresour Technol. 2023 Aug; 381:129091. doi: 10.1016/j.biortech.2023.129091. Epub 2023 Apr 25" |