Title: | Efficient synthetic protocols in glycerol under heterogeneous catalysis |
Author(s): | Cravotto G; Orio L; Gaudino EC; Martina K; Tavor D; Wolfson A; |
Address: | "Dipartimento di Scienza e Tecnologia del Farmaco, Universita degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy. giancarlo.cravotto@unito.it" |
ISSN/ISBN: | 1864-564X (Electronic) 1864-5631 (Linking) |
Abstract: | "The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 degrees C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents" |
Keywords: | "Chemistry Techniques, Synthetic/*methods Glycerol/*chemistry Solvents/chemistry;" |
Notes: | "MedlineCravotto, Giancarlo Orio, Laura Gaudino, Emanuela Calcio Martina, Katia Tavor, Dorith Wolfson, Adi eng Research Support, Non-U.S. Gov't Germany 2011/08/20 ChemSusChem. 2011 Aug 22; 4(8):1130-4. doi: 10.1002/cssc.201100106. Epub 2011 Aug 18" |