Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDoes selection on horn length of males and females differ in protected and hunted populations of a weakly dimorphic ungulate?    Next AbstractEmissions and Char Quality of Flame-Curtain 'Kon Tiki' Kilns for Farmer-Scale Charcoal/Biochar Production »

Mycopathologia


Title:Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds
Author(s):Cornelison CT; Gabriel KT; Barlament C; Crow SA;
Address:"Applied and Environmental Microbiology, Georgia State University, 24 Peachtree Center Ave, Atlanta, GA, USA, ctcornelison1@gsu.edu"
Journal Title:Mycopathologia
Year:2014
Volume:20131105
Issue:1-Feb
Page Number:1 - 10
DOI: 10.1007/s11046-013-9716-2
ISSN/ISBN:1573-0832 (Electronic) 0301-486X (Linking)
Abstract:"The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 degrees C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 degrees C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease"
Keywords:Aldehydes/pharmacology Animals Antifungal Agents/*pharmacology Ascomycota/drug effects/*growth & development Bacillus/metabolism Benzaldehydes/pharmacology Benzothiazoles/pharmacology Chiroptera/*microbiology Hexanols/pharmacology Microbial Sensitivity Te;
Notes:"MedlineCornelison, Christopher T Gabriel, Kyle T Barlament, Courtney Crow, Sidney A Jr eng Research Support, Non-U.S. Gov't Netherlands 2013/11/06 Mycopathologia. 2014 Feb; 177(1-2):1-10. doi: 10.1007/s11046-013-9716-2. Epub 2013 Nov 5"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024