Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility"    Next Abstract"Water-borne cues of a non-indigenous seaweed mediate grazer-deterrent responses in native seaweeds, but not vice versa" »

J Biotechnol


Title:Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae
Author(s):Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH;
Address:"Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea. Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address: ysjin@illinois.edu. Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea. Electronic address: khekim@korea.ac.kr"
Journal Title:J Biotechnol
Year:2015
Volume:20150528
Issue:
Page Number:23 - 30
DOI: 10.1016/j.jbiotec.2015.05.017
ISSN/ISBN:1873-4863 (Electronic) 0168-1656 (Linking)
Abstract:"(S)-3-Hydroxybutyrate (S-3HB) can be used as a precursor for the synthesis of biodegradable polymers such as polyhydroxyalkanoate and stereo-specific fine chemicals such as antibiotics, pheromones, and drugs. For the production of S-3HB in yeast, the biosynthetic pathway of S-3HB from acetyl-CoA, consisting of the three enzymes, acetyl-CoA C-acetyltransferase (ACCT), acetoacetyl-CoA reductase (ACR), and 3-hydroxybutyryl-CoA thioesterase (HBT), was introduced into Saccharomyces cerevisiae. An engineered yeast strain overexpressing ERG10, hbd, and tesB genes not only exhibited enzyme activities of AACT, ACR, and HBT, but also produced S-3HB from ethanol. In order to increase the titer of S-3HB, a fed-batch fermentation based on pulse feeding of ethanol as a carbon source was performed, and a final S-3HB titer of 12.0g/L was achieved. This is the first report on the production of 3HB by engineered yeast, utilizing ethanol as the carbon source, suggesting that the industrially preferred S. cerevisiae can be a promising host for producing S-3HB"
Keywords:3-Hydroxybutyric Acid/*biosynthesis Acetyl-CoA C-Acetyltransferase/genetics/metabolism Alcohol Oxidoreductases/genetics/metabolism Batch Cell Culture Techniques *Biosynthetic Pathways Ethanol/metabolism Fermentation Metabolic Engineering/*methods Saccharo;
Notes:"MedlineYun, Eun Ju Kwak, Suryang Kim, Soo Rin Park, Yong-Cheol Jin, Yong-Su Kim, Kyoung Heon eng Research Support, Non-U.S. Gov't Netherlands 2015/06/01 J Biotechnol. 2015 Sep 10; 209:23-30. doi: 10.1016/j.jbiotec.2015.05.017. Epub 2015 May 28"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025