Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPotential modes of action of Pseudomonas fluorescens ZX during biocontrol of blue mold decay on postharvest citrus    Next AbstractPotential of Volatile Organic Compounds Emitted by Pseudomonas fluorescens ZX as Biological Fumigants to Control Citrus Green Mold Decay at Postharvest »

J Hazard Mater


Title:Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst
Author(s):Wang Z; Yang H; Liu R; Xie S; Liu Y; Dai H; Huang H; Deng J;
Address:"Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, and College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China. Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, Guangxi, China. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, and College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China. Electronic address: jgdeng@bjut.edu.cn"
Journal Title:J Hazard Mater
Year:2020
Volume:20200213
Issue:
Page Number:122258 -
DOI: 10.1016/j.jhazmat.2020.122258
ISSN/ISBN:1873-3336 (Electronic) 0304-3894 (Linking)
Abstract:"Commercial TiO(2) supported 0.20 wt% Pt catalyst is obtained via the molten salt method, and both Pt nanoparticles and single atom Pt sites are observed. It exhibits high catalytic performance for toluene oxidation, with T(50) and T(90) being 173 and 183 degrees C, respectively. Reaction intermediates including benzene, p-xylene, o-xylene, benzaldehyde, phthalic acid, maleic anhydride, itaconic anhydride, acetone, and acetic acid, are detected during toluene oxidation. On this basis, likely toluene combustion reaction pathway is provided. Benzaldehyde is the most stable surface intermediate, and its oxidation can be rate-limiting for the entire toluene oxidation reaction. 2-10.0 vol% H(2)O slightly inhibits the reaction by competing surface sites with the reactant, while it does not poison the catalyst. 2.5-10.0 vol% CO(2) slightly poisons the catalyst by surface carbonate formation, whereas 50 ppm SO(2) severely poisons the catalyst by sulfite/sulfate formation"
Keywords:Catalytic oxidation mechanism Molten salt method Pt Single atom catalyst Volatile organic compounds;
Notes:"PubMed-not-MEDLINEWang, Zhiwei Yang, Huanggen Liu, Rui Xie, Shaohua Liu, Yuxi Dai, Hongxing Huang, Haibao Deng, Jiguang eng Research Support, Non-U.S. Gov't Netherlands 2020/02/25 J Hazard Mater. 2020 Jun 15; 392:122258. doi: 10.1016/j.jhazmat.2020.122258. Epub 2020 Feb 13"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025