Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTargeted GC-MS analysis of firefighters' exhaled breath: Exploring biomarker response at the individual level    Next AbstractVolatile Organic Compounds in Finnish Office Environments in 2010-2019 and Their Relevance to Adverse Health Effects »

Front Microbiol


Title:An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi
Author(s):Wallen RM; Perlin MH;
Address:"Department of Biology, University of Louisville, Louisville, KY, United States"
Journal Title:Front Microbiol
Year:2018
Volume:20180321
Issue:
Page Number:503 -
DOI: 10.3389/fmicb.2018.00503
ISSN/ISBN:1664-302X (Print) 1664-302X (Electronic) 1664-302X (Linking)
Abstract:"Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi"
Keywords:Dikarya bipolar mating dimorphic fungi homeodomain transcription factor mating type pheromone/receptor tetrapolar mating;
Notes:"PubMed-not-MEDLINEWallen, R M Perlin, Michael H eng P20 GM103436/GM/NIGMS NIH HHS/ Review Switzerland 2018/04/06 Front Microbiol. 2018 Mar 21; 9:503. doi: 10.3389/fmicb.2018.00503. eCollection 2018"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 21-09-2024