Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRISING STARS: Sex differences in toxicant-associated fatty liver disease    Next AbstractThe use of bio-guided fractionation to explore the use of leftover biomass in Dutch flower bulb production as allelochemicals against weeds »

Plant Physiol


Title:Polyphenoloxidase silencing affects latex coagulation in Taraxacum species
Author(s):Wahler D; Gronover CS; Richter C; Foucu F; Twyman RM; Moerschbacher BM; Fischer R; Muth J; Prufer D;
Address:"Westphalian Wilhelms-University of Munster, Institute of Biochemistry and Biotechnology of Plants, 48143 Muenster, Germany"
Journal Title:Plant Physiol
Year:2009
Volume:20090715
Issue:1
Page Number:334 - 346
DOI: 10.1104/pp.109.138743
ISSN/ISBN:0032-0889 (Print) 1532-2548 (Electronic) 0032-0889 (Linking)
Abstract:"Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution"
Keywords:"Catechol Oxidase/*genetics/*metabolism Down-Regulation Gene Expression Regulation, Enzymologic/physiology Gene Expression Regulation, Plant/*physiology Gene Silencing Latex/chemistry/*metabolism Plants, Genetically Modified Taraxacum/*enzymology/genetics;"
Notes:"MedlineWahler, Daniela Gronover, Christian Schulze Richter, Carolin Foucu, Florence Twyman, Richard M Moerschbacher, Bruno M Fischer, Rainer Muth, Jost Prufer, Dirk eng Research Support, Non-U.S. Gov't 2009/07/17 Plant Physiol. 2009 Sep; 151(1):334-46. doi: 10.1104/pp.109.138743. Epub 2009 Jul 15"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024