Title: | Quartz Crystal Microbalance Based Sensor Arrays for Detection and Discrimination of VOCs Using Phosphonium Ionic Liquid Composites |
Author(s): | Vaughan SR; Perez RL; Chhotaray P; Warner IM; |
Address: | "Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA. Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India" |
ISSN/ISBN: | 1424-8220 (Electronic) 1424-8220 (Linking) |
Abstract: | "Herein, we examine two sensing schemes for detection and discrimination of chlorinated volatile organic compounds (VOCs). In this work, phosphonium ionic liquids (ILs) were synthesized and vapor sensing properties examined and compared to phosphonium IL-polymer composites. Pure IL sensors were used to develop a QCM-based multisensory array (MSA), while IL-polymer composites were used to develop an MSA and virtual sensor arrays (VSAs). It was found that by employing the composite MSA, five chlorinated VOCs were accurately discriminated at 95.56%, which was an increase in accuracy as compared to pure ILs MSA (84.45%). Data acquired with two out of three VSAs allowed discrimination of chlorinated VOCs with 100% accuracy. These studies have provided greater insight into the benefits of incorporating polymers in coating materials for enhanced discrimination accuracies of QCM-based sensor arrays. To the best of our knowledge, this is the first report of a QCM-based VSA for discrimination of closely related chlorinated VOCs" |
Keywords: | ILs Msa Qcm VOCs Vsa sensor array; |
Notes: | "PubMed-not-MEDLINEVaughan, Stephanie R Perez, Rocio L Chhotaray, Pratap Warner, Isiah M eng CHE-1905105/National Science Foundation/ R25 GM069743/NH/NIH HHS/ Switzerland 2020/01/26 Sensors (Basel). 2020 Jan 22; 20(3):615. doi: 10.3390/s20030615" |