Title: | Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process? |
Author(s): | Choh Y; Shimoda T; Ozawa R; Dicke M; Takabayashi J; |
Address: | "Center for Ecological Research, Kyoto University Otsuka 509-3, Hirano, Kamitanakami Otsu 520-2113, Japan" |
DOI: | 10.1023/b:joec.0000037741.13402.19 |
ISSN/ISBN: | 0098-0331 (Print) 0098-0331 (Linking) |
Abstract: | "There is increasing evidence that volatiles emitted by herbivore-damaged plants can cause responses in downwind undamaged neighboring plants, such as the attraction of carnivorous enemies of herbivores. One of the open questions is whether this involves an active (production of volatiles) or passive (adsorption of volatiles) response of the uninfested downwind plant. This issue is addressed in the present study. Uninfested lima bean leaves that were exposed to volatiles from conspecific leaves infested with the spider mite Tetranychus urticae, emitted very similar blends of volatiles to those emitted from infested leaves themselves. Treating leaves with a protein-synthesis inhibitor prior to infesting them with spider mites completely suppressed the production of herbivore-induced volatiles in the infested leaves. Conversely, inhibitor treatment to uninfested leaves prior to exposure to volatiles from infested leaves did not affect the emission of volatiles from the exposed, uninfested leaves. This evidence supports the hypothesis that response of the exposed downwind plant is passive. T. urticae-infested leaves that had been previously exposed to volatiles from infested leaves emitted more herbivore-induced volatiles than T. urticae-infested leaves previously exposed to volatiles from uninfested leaves. The former leaves were also more attractive to the predatory mite, Phytoseiulus persimilis, than the latter. This shows that previous exposure of plants to volatiles from herbivore-infested neighbors results in a stronger response of plants in terms of predator attraction when herbivores damage the plant. This supports the hypothesis that the downwind uninfested plant is actively involved. Both adsorption and production of volatiles can mediate the attraction of carnivorous mites to plants that have been exposed to volatiles from infested neighbors" |
Keywords: | "Acyclic Monoterpenes Adaptation, Physiological Adsorption Alkenes/analysis Animals Chemotactic Factors/analysis/*metabolism Mites/*physiology Monoterpenes/analysis Phaseolus/drug effects/*parasitology/physiology Pheromones/analysis/*metabolism Plant Leave;" |
Notes: | "MedlineChoh, Yasuyuki Shimoda, Takeshi Ozawa, Rika Dicke, Marcel Takabayashi, Junji eng Comparative Study 2004/10/27 J Chem Ecol. 2004 Jul; 30(7):1305-17. doi: 10.1023/b:joec.0000037741.13402.19" |