Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAn optical olfactory sensor based on porous silicon infiltrated with room-temperature ionic liquid arrays    Next AbstractRisk Assessment of Workers' Exposure to Volatile Organic Compounds in the Air of a Petrochemical Complex in Iran »

Environ Res


Title:Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas
Author(s):Shangjie C; Yongqiong W; Fuqing X; Zhilin X; Xiaoping Z; Xia S; Juan L; Tiantao Z; Shibin W;
Address:"School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. Electronic address: xingzhilin@cqut.edu.cn. Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China. School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China"
Journal Title:Environ Res
Year:2023
Volume:20230330
Issue:
Page Number:115804 -
DOI: 10.1016/j.envres.2023.115804
ISSN/ISBN:1096-0953 (Electronic) 0013-9351 (Linking)
Abstract:"The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms"
Keywords:"Humans *Refuse Disposal Waste Disposal Facilities *Environmental Pollutants Biodegradation, Environmental Methane/analysis Oxidation-Reduction Soil Plants *Air Pollutants/analysis Landfills Methane Microorganism Plant Synergistic effects Volatile organic;"
Notes:"MedlineShangjie, Chen Yongqiong, Wang Fuqing, Xu Zhilin, Xing Xiaoping, Zhang Xia, Su Juan, Li Tiantao, Zhao Shibin, Wan eng Research Support, Non-U.S. Gov't Review Netherlands 2023/04/02 Environ Res. 2023 Jun 15; 227:115804. doi: 10.1016/j.envres.2023.115804. Epub 2023 Mar 30"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024