Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPreference by a virus vector for infected plants is reversed after virus acquisition    Next Abstract"Zooplankton diversity and physico-chemical conditions in three perennial ponds of Virudhunagar district, Tamilnadu" »

Chemosphere


Title:Sorption behaviour of xylene isomers on biochar from a range of feedstock
Author(s):Rajabi H; Mosleh MH; Mandal P; Lea-Langton A; Sedighi M;
Address:"Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK. Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK. Electronic address: mojgan.hadimosleh@manchester.ac.uk. Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK. Electronic address: majid.sedighi@manchester.ac.uk"
Journal Title:Chemosphere
Year:2021
Volume:20201215
Issue:
Page Number:129310 -
DOI: 10.1016/j.chemosphere.2020.129310
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"Inland oil spillage is one of the widespread sources of crude oil volatile organic compound emissions (CVEs) for which the long-term remedial solutions are often complex and expensive. This paper investigates the potential of a low-cost containment solution for contaminated solids by volatile organic compounds (VOCs) using biochar. The results of an extensive experimental investigation are presented on the sorption kinetics of xylene isomers (one type of the most frequently detected CVEs) on commercial biochar produced by prevalent feedstocks (wheat, corn, rice and rape straw as well as hardwood) at affordable temperatures (300-500 degrees C). Chemical and physical properties of biochar were analysed in terms of elemental composition, scanning electron microscopy, specific surface area, ATR-FTIR spectra and Raman spectrometry. We show that for high-temperature biochar with similar surface chemistry, the sorption efficiency is mainly controlled by porous structure and pore size distribution. Biochar samples with higher specific surface area and higher volume of mesopores showed the highest sorption capacity (45.37-50.88 mg/g) since the sorbate molecules have more access to active sites under a greater intra-particle diffusion and elevated pore-filling. P-xylene showed a slightly higher sorption affinity to biochar compared to other isomers, especially in mesoporous biochar, which can be related to its lower kinetic diameter and simpler molecular shape. The sorption capacity of biochar produced at higher pyrolysis temperatures was found to be more sensitive to changes in ambient temperature due to dominant physical adsorption. Elovich kinetic model was found to be the best model to describe xylenes' sorption on biochar which indirectly indicates pi-pi stacking and hydrogen bonding as the main mechanism of xylene sorption on these types of biochar"
Keywords:Adsorption *Charcoal Pyrolysis *Xylenes Biochar Crude oil contaminated soil Partitioning VOCs Xylene isomers;
Notes:"MedlineRajabi, Hamid Mosleh, Mojgan Hadi Mandal, Parthasarathi Lea-Langton, Amanda Sedighi, Majid eng England 2020/12/29 Chemosphere. 2021 Apr; 268:129310. doi: 10.1016/j.chemosphere.2020.129310. Epub 2020 Dec 15"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024