Title: | Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure |
Author(s): | Qiao X; Su B; Liu C; Song Q; Luo D; Mo G; Wang T; |
Address: | "Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), 2 Zhongguancun, North First Street, Beijing, 100190, China. University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China. School of Chemical Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, China. Beijing Synchrotron Energy Physics, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19 B Yuquan Road, Beijing, 100049, China" |
ISSN/ISBN: | 1521-4095 (Electronic) 0935-9648 (Linking) |
Abstract: | "Surface enhanced Raman scattering (SERS) is a trace detection technique that extends even to single molecule detection. Its potential application to the noninvasive recognition of lung malignancies by detecting volatile organic compounds (VOCs) that serve as biomarkers would be a breakthrough in early cancer diagnostics. This application, however, is currently limited by two main factors: (1) most VOC biomarkers exhibit only weak Raman scattering; and (2) the high mobility of gaseous molecules results in a low adsorptivity on solid substrates. To enhance the adsorption of gaseous molecules, a ZIF-8 layer is coated onto a self-assembly of gold superparticles (GSPs) in order to slow the flow rate of gaseous biomarkers and depress the exponential decay of the electromagnetic field around the GSP surfaces. Gaseous aldehydes that are released as a result of tumor-specific tissue composition and metabolism, thereby acting as indicators of lung cancer, are guided onto SERS-active GSPs substrates through a ZIF-8 channel. Through a Schiff base reaction with 4-aminothiophenol pregrafted onto gold GSPs, gaseous aldehydes are captured with a 10 ppb limit of detection, demonstrating tremendous prospects for in vitro diagnoses of early stage lung cancer" |
Keywords: | "Biomarkers, Tumor Gold Metal Nanoparticles Nanotechnology *Spectrum Analysis, Raman biomarkers self-assembly superparticles surface enhanced Raman scattering (SERS) volatile organic compounds (VOCs);" |
Notes: | "MedlineQiao, Xuezhi Su, Bensheng Liu, Cong Song, Qian Luo, Dan Mo, Guang Wang, Tie eng Germany 2017/12/12 Adv Mater. 2018 Feb; 30(5). doi: 10.1002/adma.201702275. Epub 2017 Dec 11" |