Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe general odorant receptor GmolOR9 from Grapholita molesta (Lepidoptera: Tortricidae) is mainly tuned to eight host-plant volatiles    Next AbstractDevelopment of a Dual MOS Electronic Nose/Camera System for Improving Fruit Ripeness Classification »

Chem Rev


Title:Hierarchically Structured Zeolites: From Design to Application
Author(s):Chen LH; Sun MH; Wang Z; Yang W; Xie Z; Su BL;
Address:"State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China. Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China. Clare Hall, University of Cambridge, Cambridge CB2 1EW, United Kingdom"
Journal Title:Chem Rev
Year:2020
Volume:20200911
Issue:20
Page Number:11194 - 11294
DOI: 10.1021/acs.chemrev.0c00016
ISSN/ISBN:1520-6890 (Electronic) 0009-2665 (Linking)
Abstract:"Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of 'material-properties-by-quantitative and real rational design' based on the 'generalized Murray's Law' that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems"
Keywords:"Adsorption Carbon Dioxide/chemistry/*isolation & purification *Drug Design Particle Size Porosity Volatile Organic Compounds/chemistry/*isolation & purification Wastewater/*chemistry Water Pollutants, Chemical/chemistry/*isolation & purification Zeolites/;"
Notes:"MedlineChen, Li-Hua Sun, Ming-Hui Wang, Zhao Yang, Weimin Xie, Zaiku Su, Bao-Lian eng Research Support, Non-U.S. Gov't Review 2020/09/12 Chem Rev. 2020 Oct 28; 120(20):11194-11294. doi: 10.1021/acs.chemrev.0c00016. Epub 2020 Sep 11"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-01-2025