Title: | Performance characteristics of a commercial controlled-release dispenser of sex pheromone for control of codling moth (Cydia pomonella) by mating disruption |
Author(s): | McDonough LM; Aller WC; Knight AL; |
Address: | "Agricultural Research Service, USDA, 3706 W. Nob Hill Blvd., 98902, Yakima, Washington" |
ISSN/ISBN: | 0098-0331 (Print) 0098-0331 (Linking) |
Abstract: | "Performance characteristics of polyethylene tube dispensers containing a mixture of (E,E)-8,10-dodecadien-1-ol (1), dodecan-1-ol (2), and tetradecan-1-ol (3) were evaluated for suitability as a mating disruptant for codling moth control. The rate of loss of pheromone component from a dispenser at any time was found to be described by the equation: -dP/dt=(k 1 k 2 +k d)P whereP is the amount of pheromone component in the dispenser well;t is time;k 1 is the ratio of the amount dissolved in the dispenser wall to the amount in the dispenser well;k 1 is the ratio of the evaporation rate to the amount dissolved in the dispenser wall;k d is the rate constant for chemical decomposition. The evaporation rate,E, of a pheromone component at any time was given by:E=k 1 k 2 P For all three components during the first three weeks,k 1 decreased from ca. 0.25 to ca. 0.10 and was approximately constant thereafter. The decrease ofk 1 with time may have been caused by weather-induced cross-linking of the polyethylene. Over timek 2 was constant and was 1.27 +/- 0.26 x 10(-3)/hr for1, 1.96 +/- 0.33 x 10su-3/hr for 2, and 0.31+/- 0.05 x 10(-3)/hr for 3. Thek 2 was zero for2 and3 and 6.96 x 10(-4) for1. After 150 days in an orchard in 1991, 95% of1 was lost from the dispensers (61% of the loss was by chemical decomposition and 39% by evaporation). The heat summation units in a Yakima valley orchard during 1991 were 4.7% above the average for the 1980-1991 period, while during 1990 they were the highest for this period (26% above average). After the first three weeks of dispenser aging, the regression line half-lives for1 for 1990 and 1991 were 31.0 and 35.1 days, respectively. The difference in temperature between 1990 and 1991 did not affect the half-life of1 very much because so much of the loss was from photochemically induced decomposition. Based on an estimate of the required minimum evaporation rate for mating disruption of 2 mg/ha-hr and a half-life of 35 days for1, 2345 dispensers/ha would be required for one application per season; 944 dispensers/ha for two applications per season; and 734 dispensers/ha for three applications per season. If a different emission rate of1 is required for reliable mating disruption, then the number of dispensers required would be changed proportionately" |
Notes: | "PubMed-not-MEDLINEMcDonough, L M Aller, W C Knight, A L eng 1992/12/01 J Chem Ecol. 1992 Dec; 18(12):2177-89. doi: 10.1007/BF00984945" |