Title: | Synthesis of beta-D-glucopyranuronosylamine in aqueous solution: kinetic study and synthetic potential |
Author(s): | Ghadban A; Albertin L; Moussavou Mounguengui RW; Peruchon A; Heyraud A; |
Address: | "Centre de Recherches sur les Macromolecules Vegetales (CERMAV-CNRS), BP53, 38041 Grenoble cedex 9, France" |
DOI: | 10.1016/j.carres.2011.08.018 |
ISSN/ISBN: | 1873-426X (Electronic) 0008-6215 (Linking) |
Abstract: | "A systematic study of the synthesis of beta-D-glucopyranuronosylamine in water is reported. When sodium D-glucuronate was reacted with ammonia and/or volatile ammonium salts in water a mixture of beta-D-glucopyranuronosylamine and ammonium N-beta-D-glucopyranuronosyl carbamate was obtained at a rate that strongly depended on the experimental conditions. In general higher ammonia and/or ammonium salt concentrations led to a faster conversion of the starting sugar into intermediate species and of the latter into the final products. Yet, some interesting trends and exceptions were observed. The use of saturated ammonium carbamate led to the fastest rates and the highest final yields of beta-D-glucopyranuronosylamine/carbamate. With the exception of 1 M ammonia and 0.6 M ammonium salt, after 24 h of reaction all tested protocols led to higher yields of beta-glycosylamine/carbamate than concentrated commercial ammonia alone. The mole fraction of alpha-D-glucopyranuronosylamine/carbamate at equilibrium was found to be 7-8% in water at 30 degrees C. Concerning bis(beta-D-glucopyranuronosyl)amine, less than 3% of it is formed in all cases, with a minimum value of 0.5% in the case of saturated ammonium carbamate. Surprisingly, the reaction was consistently faster in the case of sodium D-glucuronate than in the case of D-glucose (4-8 times faster). Finally, the synthetic usefulness of our approach was demonstrated by the synthesis of three N-acyl-beta-D-glucopyranuronosylamines and one N-alkylcarbamoyl-beta-D-glucopyranuronosylamine directly in aqueous-organic solution without resorting to protective group chemistry" |
Keywords: | "Algorithms Ammonia/chemistry *Chemistry Techniques, Synthetic Glucosamine/*analogs & derivatives/chemical synthesis/chemistry Glucose/chemistry Glucuronates/*chemical synthesis/chemistry Kinetics Magnetic Resonance Spectroscopy Quaternary Ammonium Compoun;" |
Notes: | "MedlineGhadban, Ali Albertin, Luca Moussavou Mounguengui, Redeo W Peruchon, Alexandre Heyraud, Alain eng Netherlands 2011/09/20 Carbohydr Res. 2011 Nov 8; 346(15):2384-93. doi: 10.1016/j.carres.2011.08.018. Epub 2011 Aug 25" |