Title: | Preformed Pt Nanoparticles Supported on Nanoshaped CeO(2) for Total Propane Oxidation |
Author(s): | Ge S; Chen Y; Tang X; Shen Y; Lou Y; Wang L; Guo Y; Llorca J; |
Address: | "Key Laboratory for Advanced and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politecnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain. Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China" |
ISSN/ISBN: | 2574-0970 (Electronic) 2574-0970 (Linking) |
Abstract: | "Pt-based catalysts have been widely used for the removal of short-chain volatile organic compounds (VOCs), such as propane. In this study, we synthesized Pt nanoparticles with a size of ca. 2.4 nm and loaded them on various fine-shaped CeO(2) with different facets to investigate the effect of CeO(2) morphology on the complete oxidation of propane. The Pt/CeO(2)-o catalyst with 111 facets exhibited superior catalytic activity compared to the Pt/CeO(2)-r catalyst with 110 and 100 facets. Specifically, the turnover frequency (TOF) value of Pt/CeO(2)-o was 1.8 times higher than that of Pt/CeO(2)-r. Moreover, Pt/CeO(2)-o showed outstanding long-term stability during 50 h. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the excellent performance of Pt/CeO(2)-o is due to the prevalence of metallic Pt species, which promotes C-C bond cleavage and facilitates the rapid removal of surface formate species. In contrast, a stronger metal-support interaction in Pt/CeO(2)-r leads to easier oxidation of Pt species and the accumulation of intermediates, which is detrimental to the catalytic activity. Our work provides insight into the oxidation of propane on different nanoshaped Pt/CeO(2) catalysts" |
Notes: | "PubMed-not-MEDLINEGe, Shasha Chen, Yufen Tang, Xuan Shen, Yali Lou, Yang Wang, Li Guo, Yun Llorca, Jordi eng 2023/08/31 ACS Appl Nano Mater. 2023 Aug 15; 6(16):15073-15084. doi: 10.1021/acsanm.3c02688. eCollection 2023 Aug 25" |