Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe production of a key floral volatile is dependent on UV light in a sexually deceptive orchid    Next Abstract"A rapid decision sampling plan for implementing area-wide management of the red palm weevil, Rhynchophorus ferrugineus, in coconut plantations of India" »

Insect Mol Biol


Title:Structural and biochemical evaluation of Ceratitis capitata odorant-binding protein 22 affinity for odorants involved in intersex communication
Author(s):Falchetto M; Ciossani G; Scolari F; Di Cosimo A; Nenci S; Field LM; Mattevi A; Zhou JJ; Gasperi G; Forneris F;
Address:"Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy. Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK"
Journal Title:Insect Mol Biol
Year:2019
Volume:20190117
Issue:3
Page Number:431 - 443
DOI: 10.1111/imb.12559
ISSN/ISBN:1365-2583 (Electronic) 0962-1075 (Linking)
Abstract:"In insects, odorant-binding proteins (OBPs) connect the peripheral sensory system to receptors of olfactory organs. Medfly Ceratitis capitata CcapObp22 shows 37% identity and close phylogenetic affinities with Drosophila melanogaster OBP69a/pheromone-binding protein related protein 1. The CcapObp22 gene is transcribed in the antennae and maxillary palps, suggesting an active role in olfaction. Here, we recombinantly produced CcapObp22, obtaining a 13.5 kDa protein capable of binding multiple strongly hydrophobic terpene compounds, including medfly male pheromone components. The highest binding affinity [half maximal effective concentration (EC50) = 0.48 microM] was to (E,E)-alpha-farnesene, one of the most abundant compounds in the male pheromone blend. This odorant was used in cocrystallization experiments, yielding the structure of CcapOBP22. The monomeric structure shows the typical OBP folding, constituted by six alpha-helical elements interconnected by three disulphide bridges. A C-terminal seventh alpha-helix constitutes the wall of a deep, L-shaped hydrophobic cavity. Analysis of the electron density in this cavity suggested trapping of farnesene in the crystal structure, although with partial occupancy. Superposition of the CcapOBP22 structure with related seven-helical OBPs highlights striking similarity in the organization of the C-terminal segment of these proteins. Collectively, our molecular and physiological data on medfly CcapOBP22 suggest its involvement in intersex olfactory communication"
Keywords:"*Animal Communication Animals Ceratitis capitata/genetics/*physiology Female Insect Proteins/*genetics/metabolism Male Olfactory Perception/physiology Receptors, Odorant/*genetics/metabolism CcapOBP22 intersex communication medfly odorant-binding proteins;"
Notes:"MedlineFalchetto, M Ciossani, G Scolari, F Di Cosimo, A Nenci, S Field, L M Mattevi, A Zhou, J-J Gasperi, G Forneris, F eng Research Support, Non-U.S. Gov't England 2018/12/15 Insect Mol Biol. 2019 Jun; 28(3):431-443. doi: 10.1111/imb.12559. Epub 2019 Jan 17"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024