Title: | Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers |
Author(s): | Eisele AP; Mukerjee S; Smith LA; Thoma ED; Whitaker DA; Oliver KD; Wu T; Colon M; Alston L; Cousett TA; Miller MC; Smith DM; Stallings C; |
Address: | "a U.S. Environmental Protection Agency , Region 8, Denver , Colorado , USA. b U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park , North Carolina , USA. c Alion Science and Technology , Durham , North Carolina , USA. d U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory Research Triangle Park , North Carolina , USA. e Senior Environmental Employment Program, Research Triangle Park , North Carolina , USA. f U.S. Environmental Protection Agency , Region 6, Dallas , Texas , USA" |
DOI: | 10.1080/10962247.2016.1141808 |
ISSN/ISBN: | 1096-2247 (Print) 1096-2247 (Linking) |
Abstract: | "A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually |
Keywords: | Colorado Environmental Monitoring/*methods *Oil and Gas Fields Pilot Projects Texas Volatile Organic Compounds/*analysis; |
Notes: | "MedlineEisele, Adam P Mukerjee, Shaibal Smith, Luther A Thoma, Eben D Whitaker, Donald A Oliver, Karen D Wu, Tai Colon, Maribel Alston, Lillian Cousett, Tamira A Miller, Michael C Smith, Donald M Stallings, Casson eng 2016/01/16 J Air Waste Manag Assoc. 2016 Apr; 66(4):412-9. doi: 10.1080/10962247.2016.1141808" |