Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTimber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites    Next AbstractReproductive suppression in female Damaraland mole-rats Cryptomys damarensis: dominant control or self-restraint? »

BMC Bioinformatics


Title:A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants
Author(s):Clark ST; Verwoerd WS;
Address:"Centre for Advanced Computational Solutions (CfACS), Agriculture and Life Sciences Division Lincoln University, Canterbury, New Zealand. sangaa@xtra.co.nz"
Journal Title:BMC Bioinformatics
Year:2011
Volume:20110817
Issue:
Page Number:343 -
DOI: 10.1186/1471-2105-12-343
ISSN/ISBN:1471-2105 (Electronic) 1471-2105 (Linking)
Abstract:"BACKGROUND: The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and in silico methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of Arabidopsis. This involves extracting a self-contained flavonoid subnetwork from the AraCyc database and calculating feasible metabolic routes or elementary modes (EMs) for it. Those EMs leading to anthocyanin compounds are taken to constitute the anthocyanin biosynthetic pathway (ABP) and their interplay with the rest of the EMs is used to study the minimal cut sets (MCSs), which are different combinations of reactions to block for eliminating colour pigmentation. By relating the reactions to their corresponding genes, the MCSs are used to explore the phenotypic roles of the ABP genes, their relevance to the ABP and the impact their eliminations would have on other processes in the cell. RESULTS: Simulation and prediction results of the effect of different MCSs for eliminating colour pigmentation correspond with existing experimental observations. Two examples are: i) two MCSs which require the simultaneous suppression of genes DFR and ANS to eliminate colour pigmentation, correspond to observational results of the same genes being co-regulated for eliminating floral pigmentation in Aquilegia and; ii) the impact of another MCS requiring CHS suppression, corresponds to findings where the suppression of the early gene CHS eliminated nearly all flavonoids but did not affect the production of volatile benzenoids responsible for floral scent. CONCLUSIONS: From the various MCSs identified for eliminating colour pigmentation, several correlate to existing experimental observations, indicating that different MCSs are suitable for different plants, different cells, and different conditions and could also be related to regulatory genes. Being able to correlate the predictions with experimental results gives credence to the use of these mathematical and in silico analyses methods in the design of experiments. The methods could be used to prioritize target enzymes for different objectives to achieve desired outcomes, especially for less understood pathways"
Keywords:"Anthocyanins/biosynthesis Aquilegia/*genetics/*metabolism Arabidopsis/*genetics/*metabolism Biosynthetic Pathways Flavonoids/biosynthesis Genes, Regulator Metabolic Networks and Pathways *Pigmentation Systems Biology/*methods;"
Notes:"MedlineClark, Sangaalofa T Verwoerd, Wynand S eng Research Support, Non-U.S. Gov't England 2011/08/19 BMC Bioinformatics. 2011 Aug 17; 12:343. doi: 10.1186/1471-2105-12-343"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024