Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractReducing ammonia emissions and volatile fatty acids in poultry litter with liquid aluminum chloride    Next AbstractSuppression of the phenolic SOA formation in the presence of electrolytic inorganic seed »

Sci Rep


Title:"Trails of ants converge or diverge through lens-shaped impediments, resembling principles of optics"
Author(s):Choi J; Lim H; Song W; Cho H; Kim HY; Lee SI; Jablonski PG;
Address:"Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea. College of Medicine, Seoul National University, Seoul, 03080, South Korea. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, South Korea. hyk@snu.ac.kr. Laboratory of Integrative Animal Ecology, Department of New Biology, DGIST, Daegu, 42988, South Korea. sangim@dgist.ac.kr. Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea. piotrjab@behecolpiotrsangim.org. Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, 00-679, Poland. piotrjab@behecolpiotrsangim.org"
Journal Title:Sci Rep
Year:2020
Volume:20200521
Issue:1
Page Number:8479 -
DOI: 10.1038/s41598-020-65245-0
ISSN/ISBN:2045-2322 (Electronic) 2045-2322 (Linking)
Abstract:"Analogies across disciplines often indicate the existence of universal principles such as optimization, while the underlying proximate mechanisms may differ. It was reported recently that trails of ants refract at the border of substrates, on which walking speeds differ. This phenomenon is analogous to the travel-time-minimizing routes of light refracting at the borders between different media. Here, we further demonstrate that ant tracks converge or diverge across lens-shaped impediments similar to light rays through concave or convex optical lenses. The results suggest that the optical principle of travel time reduction may apply to ants. We propose a simple mathematical model that assumes nonlinear positive feedback in pheromone accumulation. It provides a possible explanation of the observed similarity between ant behavior and optics, and it is the first quantitative theoretical demonstration that pheromone-based proximate mechanisms of trail formation may produce this similarity. However, the future detailed empirical observations of ant behavior on impediment edges during the process of pheromone trail formation are needed in order to evaluate alternative explanations for this similarity"
Keywords:"Animals Ants/*drug effects/*physiology Behavior, Animal/*drug effects Feeding Behavior Locomotion *Models, Theoretical *Optics and Photonics Pheromones/*pharmacology;"
Notes:"MedlineChoi, Jibeom Lim, Hangah Song, Woncheol Cho, Han Kim, Ho-Young Lee, Sang-Im Jablonski, Piotr G eng Research Support, Non-U.S. Gov't England 2020/05/23 Sci Rep. 2020 May 21; 10(1):8479. doi: 10.1038/s41598-020-65245-0"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024