Title: | Simulation Modeling to Interpret the Captures of Moths in Pheromone-Baited Traps Used for Surveillance of Invasive Species: the Gypsy Moth as a Model Case |
Address: | "Department of Systems Biology, University of Vic - Central University of Catalonia, 08500, Vic, Barcelona, Spain. Department of Entomology, University of California, Riverside, CA, 92521, USA. ring.carde@ucr.edu" |
DOI: | 10.1007/s10886-016-0765-0 |
ISSN/ISBN: | 1573-1561 (Electronic) 0098-0331 (Linking) |
Abstract: | "When pheromone traps are used for detection of an invasive pest and then delimitation of its distribution, an unresolved issue is the interpretation of failure to capture any target insects. Is a population present but not detected, a so-called false negative? Using the gypsy moth (Lymantria dispar) as an exemplar, we modeled the probability of males being captured in traps deployed at densities typical for surveillance (1 per 2.6 km(2) or 1 per mi(2)) and delimitation (up to 49 per 2.6 km(2)). The simulations used a dynamic wind model generating a turbulent plume structure and varying wind direction, and a behavior model based on the documented maneuvers of gypsy moths during plume acquisition and along-plume navigation. Several strategies of plume acquisition using Correlated Random Walks were compared to ensure that the generated dispersions over three days were not either overly clumped or ranged many km. Virtual moths were released into virtual space with patterns mimicking prior releases of gypsy moth males in Massachusetts at varying distance from a baited trap. In general, capture rates of virtual and real moths at varying trap densities were similar. One application of this approach was to estimate through bootstrapping the probabilities of not detecting populations having densities ranging from 1 to 100 moths per 2.6 km(2) and using traps that varied from 25 to 100 % in their efficiencies of capture. Low-level populations (e.g., 20-30 per 2.6 km(2)) often were not detected with one trap per 2.6 km(2), especially when traps had low efficiencies" |
Keywords: | "Animal Distribution Animals Computer Simulation Female Flight, Animal *Insect Control/methods *Introduced Species Male Models, Biological Moths/*physiology Pheromones/*metabolism Gypsy moth Invasive species Lymantria dispar Pheromone trapping Simulation m;" |
Notes: | "MedlineBau, Josep Carde, Ring T eng 2016/09/25 J Chem Ecol. 2016 Sep; 42(9):877-887. doi: 10.1007/s10886-016-0765-0. Epub 2016 Sep 23" |