Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffects of Various Rice-Based Raw Materials on Enhancement of Volatile Aromatic Compounds in Monascus Vinegar    Next AbstractFatty acid metabolism-related genes are associated with flavor-presenting aldehydes in Chinese local chicken »

Front Genet


Title:Integration of Transcriptome and Methylome Analyses Provides Insight Into the Pathway of Floral Scent Biosynthesis in Prunus mume
Author(s):Yuan X; Ma K; Zhang M; Wang J; Zhang Q;
Address:"Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China"
Journal Title:Front Genet
Year:2021
Volume:20211215
Issue:
Page Number:779557 -
DOI: 10.3389/fgene.2021.779557
ISSN/ISBN:1664-8021 (Print) 1664-8021 (Electronic) 1664-8021 (Linking)
Abstract:"DNA methylation is a common epigenetic modification involved in regulating many biological processes. However, the epigenetic mechanisms involved in the formation of floral scent have rarely been reported within a famous traditional ornamental plant Prunus mume emitting pleasant fragrance in China. By combining whole-genome bisulfite sequencing and RNA-seq, we determined the global change in DNA methylation and expression levels of genes involved in the biosynthesis of floral scent in four different flowering stages of P. mume. During flowering, the methylation status in the 'CHH' sequence context (with H representing A, T, or C) in the promoter regions of genes showed the most significant change. Enrichment analysis showed that the differentially methylated genes (DMGs) were widely involved in eight pathways known to be related to floral scent biosynthesis. As the key biosynthesis pathway of the dominant volatile fragrance of P. mume, the phenylpropane biosynthesis pathway contained the most differentially expressed genes (DEGs) and DMGs. We detected 97 DMGs participated in the most biosynthetic steps of the phenylpropane biosynthesis pathway. Furthermore, among the previously identified genes encoding key enzymes in the biosynthesis of the floral scent of P. mume, 47 candidate genes showed an expression pattern matching the release of floral fragrances and 22 of them were differentially methylated during flowering. Some of these DMGs may or have already been proven to play an important role in biosynthesis of the key floral scent components of P. mume, such as PmCFAT1a/1c, PmBEAT36/37, PmPAL2, PmPAAS3, PmBAR8/9/10, and PmCNL1/3/5/6/14/17/20. In conclusion, our results for the first time revealed that DNA methylation is widely involved in the biosynthesis of floral scent and may play critical roles in regulating the floral scent biosynthesis of P. mume. This study provided insights into floral scent metabolism for molecular breeding"
Keywords:Prunus mume cytosine methylation floral scent phenylpropane biosynthesis pathway transcriptome;
Notes:"PubMed-not-MEDLINEYuan, Xi Ma, Kaifeng Zhang, Man Wang, Jia Zhang, Qixiang eng Switzerland 2022/01/04 Front Genet. 2021 Dec 15; 12:779557. doi: 10.3389/fgene.2021.779557. eCollection 2021"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024