Title: | Detection of Volatile Organic Compounds with Secondary Electrospray Ionization and Proton Transfer Reaction High-Resolution Mass Spectrometry: A Feature Comparison |
Author(s): | Bruderer T; Gaugg MT; Cappellin L; Lopez-Hilfiker F; Hutterli M; Perkins N; Zenobi R; Moeller A; |
Address: | "Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland. Division of Respiratory Medicine, University Children's Hospital Zurich and Children's Research Center Zurich, 8032 Zurich, Switzerland. TOFWERK AG, 3645 Thun, Switzerland. Dipartimento di Scienze Chimiche, Universita degli Studi di Padova, 35131 Padua, Italy. Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy. Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, 8032 Zurich, Switzerland" |
ISSN/ISBN: | 1879-1123 (Electronic) 1044-0305 (Linking) |
Abstract: | "The analysis of volatiles is of high relevance for a wide range of applications from environmental air sampling and security screening to potential medical applications. High-resolution mass spectrometry methods offer a particularly wide compound coverage, sensitivity, and selectivity. Online approaches allow direct analysis in real time without the need for sample preparation. For the first time, we systematically compared the analysis of volatile organic compounds with secondary electrospray ionization (SESI) and proton transfer reaction (PTR) high-resolution mass spectrometry. The selected instruments had comparable mass resolving powers with m/Deltam >/= 15000, which is particularly suitable for nontargeted analysis, for example, of exhaled breath. Exhalations from 14 healthy adults were analyzed simultaneously on both instruments. In addition, 97 reference standards from nine chemical classes were analyzed with a liquid evaporation system. Surprisingly, in breath, we found more complementary than overlapping features. A clear mass dependence was observed for each method with the highest number of detected m/z features for SESI in the high mass region (m/z = 150-250) and for PTR in the low mass region (m/z = 50-150). SESI yielded a significantly higher numbers of peaks (828) compared to PTR (491) among a total of 1304 unique breath m/z features. The number of signals observed by both methods was lower than expected (133 features) with 797 unique SESI features and 374 unique PTR features. Hypotheses to explain the observed mass-dependent differences are proposed" |
Notes: | "PublisherBruderer, Tobias Gaugg, Martin T Cappellin, Luca Lopez-Hilfiker, Felipe Hutterli, Manuel Perkins, Nathan Zenobi, Renato Moeller, Alexander eng 2020/06/26 J Am Soc Mass Spectrom. 2020 Jul 13. doi: 10.1021/jasms.0c00059" |