Title: | Evolutionary assembly of cooperating cell types in an animal chemical defense system |
Author(s): | Bruckner A; Badroos JM; Learsch RW; Yousefelahiyeh M; Kitchen SA; Parker J; |
Address: | "Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address: joep@caltech.edu" |
DOI: | 10.1016/j.cell.2021.11.014 |
ISSN/ISBN: | 1097-4172 (Electronic) 0092-8674 (Linking) |
Abstract: | "How the functions of multicellular organs emerge from the underlying evolution of cell types is poorly understood. We deconstructed evolution of an organ novelty: a rove beetle gland that secretes a defensive cocktail. We show how gland function arose via assembly of two cell types that manufacture distinct compounds. One cell type, comprising a chemical reservoir within the abdomen, produces alkane and ester compounds. We demonstrate that this cell type is a hybrid of cuticle cells and ancient pheromone and adipocyte-like cells, executing its function via a mosaic of enzymes from each parental cell type. The second cell type synthesizes benzoquinones using a chimera of conserved cellular energy and cuticle formation pathways. We show that evolution of each cell type was shaped by coevolution between the two cell types, yielding a potent secretion that confers adaptive value. Our findings illustrate how cooperation between cell types arises, generating new, organ-level behaviors" |
Keywords: | Animals Benzoquinones/*metabolism Biological Evolution Biosynthetic Pathways Coleoptera/*metabolism Drosophila melanogaster/*metabolism Pheromones/*metabolism Dalotia coriaria biosynthetic pathway evolution cell type evolution enzyme evolution evolution o; |
Notes: | "MedlineBruckner, Adrian Badroos, Jean M Learsch, Robert W Yousefelahiyeh, Mina Kitchen, Sheila A Parker, Joseph eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2021/12/11 Cell. 2021 Dec 9; 184(25):6138-6156.e28. doi: 10.1016/j.cell.2021.11.014" |