Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractNon-Invasive O-Toluidine Monitoring during Regional Anaesthesia with Prilocaine and Detection of Accidental Intravenous Injection in an Animal Model    Next AbstractFemale mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones »

Beilstein J Org Chem


Title:Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria
Author(s):Brock NL; Citron CA; Zell C; Berger M; Wagner-Dobler I; Petersen J; Brinkhoff T; Simon M; Dickschat JS;
Address:"Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany"
Journal Title:Beilstein J Org Chem
Year:2013
Volume:20130515
Issue:
Page Number:942 - 950
DOI: 10.3762/bjoc.9.108
ISSN/ISBN:1860-5397 (Print) 1860-5397 (Electronic) 1860-5397 (Linking)
Abstract:"Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP) via competing pathways releasing either methanethiol (MeSH) or dimethyl sulfide (DMS). Deuterium-labeled [(2)H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP) were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC-MS. Feeding experiments with [(2)H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [(2)H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [(2)H3]methionine and (34)SO4 (2-), synthesized from elemental (34)S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction"
Keywords:Roseobacter clade dimethylsulfoniopropionate selenium metabolism sulfur metabolism volatiles;
Notes:"PubMed-not-MEDLINEBrock, Nelson L Citron, Christian A Zell, Claudia Berger, Martine Wagner-Dobler, Irene Petersen, Jorn Brinkhoff, Thorsten Simon, Meinhard Dickschat, Jeroen S eng Germany 2013/06/15 Beilstein J Org Chem. 2013 May 15; 9:942-50. doi: 10.3762/bjoc.9.108. Print 2013"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024