Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMetabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation    Next Abstract"Molecular Characterization and Key Binding Sites of Sex Pheromone-Binding Proteins from the Meadow Moth, Loxostege sticticalis" »

J Insect Physiol


Title:"A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae)"
Author(s):Wen M; Li E; Chen Q; Kang H; Zhang S; Li K; Wang Y; Jiao Y; Ren B;
Address:"Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China. Electronic address: yinliangwang99@hotmail.com. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. Electronic address: ajiaozi@163.com. Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China. Electronic address: bzren@163.com"
Journal Title:J Insect Physiol
Year:2019
Volume:20190906
Issue:
Page Number:103941 -
DOI: 10.1016/j.jinsphys.2019.103941
ISSN/ISBN:1879-1611 (Electronic) 0022-1910 (Linking)
Abstract:"The meadow moth Loxostege sticticalis is a serious agricultural pest that feeds on the leaves of many economic crops, such as sugar beet, soybean, sunflower, and potato. In addition to the rapid migration of adult moths, the collective foraging behavior of the larvae is also thought to be involved in the search for new food sources and substantially contributes to the expansion of the infested area. However, whether and how the chemical signals take part in this process remains unknown. In this study, two larva-specific expressed odorants, LstiOR5 and LstiOR6, were successfully cloned and deophanized. A heterologous study on Xenopus laevis oocytes showed that several host plant volatiles could evoke LstiOR responses in a dose-dependent manner. One herbivore-induced plant volatile (HIPV) of soybean leaves, methyl salicylate (MeSA), exerted attractive effects on the L. sticticalis larvae at all tested concentrations. Further foraging choice assays showed that the L. sticticalis larvae preferred foraged soybean leaves over unforaged leaves. When MeSA was artificially added to unforaged leaves, the unforaged leaves were preferred over the foraged leaves. In addition, GC-MS analysis demonstrated that MeSA was induced by the foraging behavior of the larvae and acted as a collective food signal in L. sticticalis. Moreover, in situ hybridization showed that LstiOR5 was highly expressed in larval antenna neurons. When LstiOR5 was silenced, both the electrophysiological response of the antenna to MeSA and the preference for foraged leaves were significantly decreased, suggesting that LstiOR5 is involved in the collective foraging behavior of L. sticticalis. Our results clarified the chemical signals that trigger the collective foraging behavior of L. sticticalis and provided more evidence for the molecular mechanism underlying the expansions of their infested areas at a peripheral olfactory sensing level. These findings could facilitate the development of potential control strategies for controlling this pest and provide a potential gene target that correlates with the collective foraging behavior of L. sticticalis, which might lead to better pest management"
Keywords:Animals Appetitive Behavior/*drug effects Arthropod Antennae/innervation/physiology Electrophysiological Phenomena Feeding Behavior/drug effects Herbivory Larva/drug effects/physiology Moths/*drug effects/genetics/physiology Oocytes Plant Leaves/chemistry;
Notes:"MedlineWen, Ming Li, Ertao Chen, Qi Kang, Hui Zhang, Shuai Li, Kebin Wang, Yinliang Jiao, Yin Ren, Bingzhong eng Research Support, Non-U.S. Gov't England 2019/09/10 J Insect Physiol. 2019 Oct; 118:103941. doi: 10.1016/j.jinsphys.2019.103941. Epub 2019 Sep 6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-06-2024