Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEstimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model    Next AbstractA Narrative Review of Sulfur Compounds in Whisk(e)y »

Integr Environ Assess Manag


Title:Identifying organic chemicals not subject to bioaccumulation in air-breathing organisms using predicted partitioning and biotransformation properties
Author(s):Wania F; Lei YD; Baskaran S; Sangion A;
Address:"Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada"
Journal Title:Integr Environ Assess Manag
Year:2022
Volume:20211216
Issue:5
Page Number:1297 - 1312
DOI: 10.1002/ieam.4555
ISSN/ISBN:1551-3793 (Electronic) 1551-3777 (Print) 1551-3777 (Linking)
Abstract:"Because the respiration processes contributing to the elimination of organic chemicals deviate between air- and water-breathing organisms, existing and widely used procedures for identifying chemicals not subject to bioaccumulation in aquatic organisms based on the octanol-water partition ratio K(OW) need to be complemented with similar procedures for organisms respiring air. Here, we propose such a procedure that relies on the comparison of a compound's predicted K(OW) , octanol-air partition ratio K(OA) , and biotransformation half-life HL(B) with three threshold values, below which elimination is judged to be sufficiently rapid to prevent bioaccumulation. The method allows for the consideration of the effect of dissociation on the efficiency of urinary and respiratory elimination. Explicit application of different types of the prediction error, such as the 95% prediction interval or the standard error, allows for variable tolerance for false-negative decisions, that is, the potential to judge a chemical as not bioaccumulative even though it is. A test with a set of more than 1000 diverse organic chemicals confirms the applicability of the prediction methods for a wide range of compounds and the procedure's ability to categorize approximately four-fifth of compounds as being of no bioaccumulation concern, suggesting its usefulness to screen large numbers of commercial chemicals to identify those worthy of further scrutiny. The test also demonstrates that a screening based solely on K(OW) and K(OA) would be far less effective because the fraction of chemicals that can be judged as sufficiently volatile and/or sufficiently water soluble for rapid respiratory and urinary elimination based on the partitioning properties predicted for their neutral form is relatively small. Future improvements of the proposed procedure depend largely on the development of prediction methods for the biotransformation kinetics in air-breathing organisms and for the potential for renal reabsorption. Integr Environ Assess Manag 2022;18:1297-1312. (c) 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)"
Keywords:*Aquatic Organisms/metabolism Biotransformation Kinetics Octanols/chemistry *Organic Chemicals Water Bioaccumulation Chemical assessment Partitioning;
Notes:"MedlineWania, Frank Lei, Ying Duan Baskaran, Sivani Sangion, Alessandro eng LRI ECO-41/European Chemical Industry Council/ 2021/11/17 Integr Environ Assess Manag. 2022 Sep; 18(5):1297-1312. doi: 10.1002/ieam.4555. Epub 2021 Dec 16"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024