Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEvaluation of physicochemical properties of Qinling Apis cerana honey and the antimicrobial activity of the extract against Salmonella Typhimurium LT(2) in vitro and in vivo    Next AbstractHigh-throughput sequencing-based characterization of the predominant microbial community associated with characteristic flavor formation in Jinhua Ham »

Sci Total Environ


Title:"High gaseous carbonyl concentrations in the upper boundary layer in Shijiazhuang, China"
Author(s):Wang Y; Wang Y; Tang G; Yang Y; Li X; Yao D; Wu S; Kang Y; Wang M; Wang Y;
Address:"State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: wangyinghong@mail.iap.ac.cn. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: tgq@dq.cern.ac.cn. Weather Modification Office of Hebei Province, Shijiazhuang 050021, China. Capital Normal University, Beijing, 100048, China. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Anhui University, Hefei 230601, China. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China"
Journal Title:Sci Total Environ
Year:2021
Volume:20210804
Issue:
Page Number:149438 -
DOI: 10.1016/j.scitotenv.2021.149438
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"Oxygenated volatile organic compounds (OVOCs) are important precursors of secondary air pollutants. However, knowledge of the vertical characteristics of OVOCs in the lower troposphere is lacking. Pairs of OVOCs samples were simultaneously collected via 2,4-dinitrophenylhydrazine (DNPH) near the ground and in the upper boundary layer (at 500 m in winter and 600 m in summer) with a tethered balloon in Shijiazhuang in January and June 2019. The samples were analyzed via high-performance liquid chromatography (HPLC), and 26 vertical profiles of 13 OVOCs were obtained in this study. In winter, the average concentrations of the total OVOCs (TOVOCs) in the upper boundary layer and near the ground were 7.9 +/- 4.1 ppbv and 5.5 +/- 2.8 ppbv, respectively; while in summer, the average concentrations were 7.1 +/- 3.5 ppbv and 6.5 +/- 2.7 ppbv, respectively. Acetone, formaldehyde and acetaldehyde were the three main components accounting for more than 80% of the TOVOCs. Significant vertical differences were observed before sunrise in winter and in the afternoon in summer. The TOVOCs concentration in the residual layer (8.4 +/- 3.6 ppbv) was higher than that near the ground (6.0 +/- 2.5 ppbv), while in the summer afternoon, the concentration in the upper mixing layer (ML) (9.5 +/- 2.2 ppbv) was higher than that near the ground (5.8 +/- 3.1 ppbv). OVOCs sources were examined with a positive matrix factorization (PMF) model. In winter, the small-molecule carbonyls (SMCs) in the upper boundary layer are mainly derived from secondary + long-lived species (68.4%) because volatile organic compounds at high concentrations were oxidized into OVOCs. In summer, the SMCs in the upper ML were mainly affected by elevated industrial point source emissions (42.9%). These data indicate that vertical gradient observations of SMCs are an important supplement to advance current air pollution research"
Keywords:*Air Pollutants/analysis China Environmental Monitoring Gases *Volatile Organic Compounds/analysis Gaseous carbonyls Source apportionment Vertical profile;
Notes:"MedlineWang, Yiming Wang, Yinghong Tang, Guiqian Yang, Yang Li, Xingru Yao, Dan Wu, Shuang Kang, Yanyu Wang, Meng Wang, Yuesi eng Netherlands 2021/08/25 Sci Total Environ. 2021 Dec 10; 799:149438. doi: 10.1016/j.scitotenv.2021.149438. Epub 2021 Aug 4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 23-09-2024