Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review"    Next AbstractInduction of ear wiggling in the estrous female rat by gonadectomized rats treated with androgens and estrogens »

Food Technol Biotechnol


Title:Chemical Composition and Biological Activity of Essential Oil and Extract from the Seeds of Tropaeolum majus L. var. altum
Author(s):Vrca I; Ramic D; Fredotovic Z; Smole Mozina S; Blazevic I; Bilusic T;
Address:"Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Rudera Boskovica 35, 21000 Split, Croatia. Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia. Department of Biology, Faculty of Science, University of Split, Rudera Boskovica 33, 21000 Split, Croatia. Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Rudera Boskovica 35, 21000 Split, Croatia"
Journal Title:Food Technol Biotechnol
Year:2022
Volume:60
Issue:4
Page Number:533 - 542
DOI: 10.17113/ftb.60.04.22.7667
ISSN/ISBN:1330-9862 (Print) 1334-2606 (Electronic) 1330-9862 (Linking)
Abstract:"RESEARCH BACKGROUND: Plant Tropaeolum majus L. (garden nasturtium) belongs to the family Tropaeolaceae and contains benzyl glucosinolate. The breakdown product of benzyl glucosinolate, benzyl isothiocyanate (BITC), exhibits various biological activities such as antiproliferative, antibacterial and antiinflammatory. In order to optimize the content of biologically active volatile compounds in plant extract and essential oil, the use of appropriate extraction technique has a crucial role. EXPERIMENTAL APPROACH: The current study investigates the effect of two modern extraction methods, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG), on the chemical composition of volatile components present in the essential oil and extract of garden nasturtium (T. majus L. var. altum) seeds. Investigation of the biological activity of samples (essential oil, extract and pure compounds) was focused on the antiproliferative effect against different cancer cell lines: cervical cancer cell line (HeLa), human colon cancer cell line (HCT116) and human osteosarcoma cell line (U2OS), and the antibacterial activity which was evaluated against the growth and adhesion of Staphylococcus aureus and Escherichia coli to polystyrene surface. RESULTS AND CONCLUSIONS: Essential oil and extract of garden nasturtium (T. majus) seeds were isolated by two extraction techniques: MAD and MHG. BITC and benzyl cyanide (BCN) present in the extract were identified by gas chromatography-mass spectrometry. Essential oil of T. majus showed higher antiproliferative activity (IC(50)<5 microg/mL) than T. majus extract (IC(50)<27 microg/mL) against three cancer cell lines: HeLa, HCT116 and U2OS. BITC showed much higher inhibitory effect on all tested cells than BCN. The essential oil and extract of T. majus showed strong antimicrobial activity against S. aureus and E. coli. NOVELTY AND SCIENTIFIC CONTRIBUTION: This work represents the first comparative report on the antiproliferative activity of the essential oil and extract of T. majus seeds, BITC and BCN against HeLa, HCT116 and U2OS cells as well as their antimicrobial activity against S. aureus and E. coli. This study demonstrates that the essential oil of T. majus seeds exhibits stronger antiproliferative and antimicrobial activity than the plant extract"
Keywords:Tropaeolum majus L.antimicrobial activity antiproliferative activity benzyl cyanide benzyl isothiocyanate;
Notes:"PubMed-not-MEDLINEVrca, Ivana Ramic, Dina Fredotovic, Zeljana Smole Mozina, Sonja Blazevic, Ivica Bilusic, Tea eng Croatia 2023/02/24 Food Technol Biotechnol. 2022 Dec; 60(4):533-542. doi: 10.17113/ftb.60.04.22.7667"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024