Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractColor Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae    Next AbstractCheese milk low homogenization enhanced early lipolysis and volatiles compounds production in hard cooked cheeses »

Comput Biol Chem


Title:"Modelling and molecular docking studies of the cytoplasmic domain of Wsc-family, full-length Ras2p, and therapeutic antifungal compounds"
Author(s):Velez-Segarra V; Carrasquillo-Carrion K; Santini-Gonzalez JJ; Ramos-Valerio YA; Vazquez-Quinones LE; Roche-Lima A; Rodriguez-Medina JR; Pares-Matos EI;
Address:"Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, Puerto Rico. Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, Puerto Rico. Department of Chemistry, University of Puerto Rico-Mayaguez Campus, Mayaguez, 00680, Puerto Rico. School of Sciences and Technology, Universidad Metropolitana, 1399 Ana G. Mendez Avenue, San Juan, 00926-2602, Puerto Rico. Department of Chemistry, University of Puerto Rico-Mayaguez Campus, Mayaguez, 00680, Puerto Rico. Electronic address: elsie.pares@upr.edu"
Journal Title:Comput Biol Chem
Year:2019
Volume:20190103
Issue:
Page Number:338 - 352
DOI: 10.1016/j.compbiolchem.2019.01.001
ISSN/ISBN:1476-928X (Electronic) 1476-9271 (Print) 1476-9271 (Linking)
Abstract:"Saccharomyces cerevisiae, the budding yeast, must remodel initial cell shape and cell wall integrity during vegetative growth and pheromone-induced morphogenesis. The cell wall remodeling is monitored and regulated by the cell wall integrity (CWI) signaling pathway. Wsc1p, together with Wsc2p and Wsc3p, belongs to a family of highly O-glycosylated cell surface proteins that function as stress sensors of the cell wall in S. cerevisiae. These cell surface proteins have the main role of activating the CWI signaling pathway by stimulating the small G-protein Rho1p, which subsequently activates protein kinase C (Pkc1p) and a mitogen activated protein (MAP) kinase cascade that activates downstream transcription factors of stress-response genes. Wsc1p, Wsc2p, and Wsc3p possess a cytoplasmic domain where two conserved regions of the sequence have been assessed to be important for Rom2p interaction. Meanwhile, other research groups have also proposed that these transmembrane proteins could support protein-protein interactions with Ras2p. Molecular structures of the cytoplasmic domain of Wsc1p, Wsc2p and Wsc3p were generated using the standard and fully-automated ORCHESTAR procedures provided by the Sybyl-X 2.1.1 program. The tridimensional structure of full length Ras2p was also generated with Phyre2. These protein models were validated with Procheck-PDBsum and ProSA-web tools and subsequently used in docking-based modeling of protein-protein and protein-compound interfaces for extensive structural and functional characterization of their interaction. The results retrieved from STRING 10.5 suggest that the Wsc-family is involved in protein-protein interactions with each other and with Ras2p. Docking-based studies also validated the existence of protein-protein interactions mainly between Motif I (Wsc3p > Wsc1p > Wsc2p) and Ras2p, in agreement with the data provided by STRING 10.5. Additionally, it has shown that Calcofluor White preferably binds to Wsc1p (-9.5 kcal/mol), meanwhile Caspofungin binds to Wsc3p (-9.1 kcal/mol), Wsc1p (-9.1 kcal/mol) and more weakly Wsc2p (-6.9 kcal/mol). Thus, these data suggests Caspofungin as a common inhibitor for the Wsc-family. MTiOpenScreen database has provided a list of new compounds with energy scores higher than those compounds used in our docking studies, thus suggesting these new compounds have a better affinity towards the cytoplasmic domains and Ras2p. Based on these data, there are new and possibly more effective compounds that should be considered as therapeutic agents against yeast infection"
Keywords:"Antifungal Agents/chemistry/*pharmacology Intracellular Signaling Peptides and Proteins/*antagonists & inhibitors/metabolism Membrane Proteins/*antagonists & inhibitors/metabolism Microbial Sensitivity Tests Models, Molecular *Molecular Docking Simulation;"
Notes:"MedlineVelez-Segarra, Vladimir Carrasquillo-Carrion, Kelvin Santini-Gonzalez, Jorge J Ramos-Valerio, Yabdiel A Vazquez-Quinones, Luis E Roche-Lima, Abiel Rodriguez-Medina, Jose R Pares-Matos, Elsie I eng P20 GM103475/GM/NIGMS NIH HHS/ U54 MD007600/MD/NIMHD NIH HHS/ England 2019/01/18 Comput Biol Chem. 2019 Feb; 78:338-352. doi: 10.1016/j.compbiolchem.2019.01.001. Epub 2019 Jan 3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024