Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAn End-to-End Model of Plant Pheromone Channel for Long Range Molecular Communication    Next AbstractInsights into vapour intrusion phenomena: Current outlook and preferential pathway scenario »

Trop Anim Health Prod


Title:"Crude saponin extract from Sesbania grandiflora (L.) Pers pod meal could modulate ruminal fermentation, and protein utilization, as well as mitigate methane production"
Author(s):Unnawong N; Cherdthong A; So S;
Address:"Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. anusornc@kku.ac.th"
Journal Title:Trop Anim Health Prod
Year:2021
Volume:20210305
Issue:2
Page Number:196 -
DOI: 10.1007/s11250-021-02644-z
ISSN/ISBN:1573-7438 (Electronic) 0049-4747 (Linking)
Abstract:"The aim of the study was to conduct a basic evaluation of the in vitro effect of crude protein (CP) levels in concentrate and a saponin extract from Sesbania graniflora pods meal (SES) on the kinetics of gas, nutrient digestibility, ruminal fermentation, protein efficiency uses, and methane (CH(4)) mitigation. Eight treatments were formed according to a 2 x 4 factorial design in a completely randomized design (CRD). The first factor referred to the levels of CP at 14 and 16% on dry matter (DM) basis in the concentrate diet, and the second factor referred to the levels of SES supplementation at 0, 0.2, 0.4, and 0.6% of the total substrate on a DM basis. The results showed that S. graniflora pod meal contained 21.73% CP, 10.87% condensed tannins, and 16.20% crude saponins, respectively. Most kinetics of gas as well as cumulative gas were not influenced by the CP levels or SES addition (P > 0.05) except gas production from immediately soluble fraction (a) was significantly different by CP levels. Ammonia-nitrogen concentration of incubation at 4 h was significantly difference based on the CP levels and SES supplementation (P < 0.05). Increasing SES levels significantly (P < 0.05) decreased protozoal population. In vitro digestibility of DM and organic matter was not changed by CP levels or SES addition. Butyrate and acetate to propionate ration were decreased, and propionate was increased when increasing SES dose (P < 0.05), while CP levels did not change total volatile fatty acids and molar portions. The ruminal CH(4) concentration was reduced by 44.12% when 0.6% SES was added after 8 h of incubation. Therefore, SES supplementation could enhance protein utilization and improve rumen fermentation particularly lowering CH(4) production"
Keywords:Animal Feed Animals Cattle Diet/veterinary Digestion Female Fermentation/*drug effects Gases/metabolism Methane/*metabolism Plant Extracts/*chemistry/*pharmacology Proteins/*metabolism Rumen/*drug effects/metabolism Saponins/isolation & purification/*phar;
Notes:"MedlineUnnawong, Narirat Cherdthong, Anusorn So, Sarong eng Randomized Controlled Trial, Veterinary 2021/03/07 Trop Anim Health Prod. 2021 Mar 5; 53(2):196. doi: 10.1007/s11250-021-02644-z"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-09-2024