Title: | Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants |
Author(s): | Boczkaj G; Gagol M; Klein M; Przyjazny A; |
Address: | "Department of Chemical and Process Engineering, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland. Electronic address: grzegorz.boczkaj@gmail.com. Department of Chemical and Process Engineering, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland; Department of Polymer Technology, Gdansk University of Technology, Faculty of Chemistry, Gdansk, Poland. Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland. Kettering University, 1700 University Avenue, Department of Chemistry & Biochemistry, Flint, MI 48504, USA" |
DOI: | 10.1016/j.ultsonch.2017.08.032 |
ISSN/ISBN: | 1873-2828 (Electronic) 1350-4177 (Linking) |
Abstract: | "Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O(3)/H(2)O(2)/Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H(2)O(2), hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H(2)O(2) as an external oxidant and it should be controlled during treatment processes" |
Keywords: | Advanced oxidation processes Bitumen Degradation of contaminants Effluents Hydrodynamic cavitation Wastewater treatment; |
Notes: | "PubMed-not-MEDLINEBoczkaj, Grzegorz Gagol, Michal Klein, Marek Przyjazny, Andrzej eng Netherlands 2017/09/28 Ultrason Sonochem. 2018 Jan; 40(Pt A):969-979. doi: 10.1016/j.ultsonch.2017.08.032. Epub 2017 Sep 15" |