Title: | Immunological memory of mountain birches: effects of phenolics on performance of the autumnal moth depend on herbivory history of trees |
Author(s): | Ruuhola T; Salminen JP; Haviola S; Yang S; Rantala MJ; |
Address: | "Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland. teiruu@utu.fi" |
DOI: | 10.1007/s10886-007-9308-z |
ISSN/ISBN: | 0098-0331 (Print) 0098-0331 (Linking) |
Abstract: | "Plants have been suggested to have an immunological memory comparable to animals. The evidence for this, however, is scarce. In our study with the mountain birch -- Epirrita autumnata system, we demonstrated that birches exposed as long as 5 yr to feeding of E. autumnata larvae (delayed induced resistance, DIR), responded more strongly to a new challenge than trees without an herbivory history. Pupal weights remained lower, and the duration of the larval period was prolonged in the DIR trees, although immunity, measured as an encapsulation rate, was not affected. We further demonstrated that the effects of birch phenolics on performance of E. autumnata were different in the exposed (DIR) trees from naive control trees, although we found only one significant change in chemistry. The quercetin:kaemferol ratio was increased in DIR trees, suggesting that herbivory caused oxidative stress in birches. In DIR trees, phenolics, especially hydrolyzable tannins (HTs), affected pupal weights negatively, whereas in control trees, the effects were either nonsignificant or positive. HTs also prolonged the duration of the larval period of females, whereas peroxidase (POD) activity prolonged that of males. We suggest that the causal explanation for the induced resistance was an enhanced oxidation of phenolic compounds from the DIR trees in the larval digestive tract. Phenolic oxidation produces semiquinones, quinones, free radicals, and ROS, which may have toxic, antinutritive, and/or repellent properties against herbivores" |
Keywords: | Animals Betula/*physiology Catechol Oxidase/metabolism Female Immunologic Memory Male Moths/*physiology Peroxidases/metabolism Phenols/*analysis/metabolism Plant Leaves/chemistry/physiology Reactive Oxygen Species/metabolism; |
Notes: | "MedlineRuuhola, Teija Salminen, Juha-Pekka Haviola, Sanna Yang, Shiyong Rantala, Markus J eng Research Support, Non-U.S. Gov't 2007/05/16 J Chem Ecol. 2007 Jun; 33(6):1160-76. doi: 10.1007/s10886-007-9308-z. Epub 2007 May 15" |