Title: | Copper and herbivory lead to priming and synergism in phytohormones and plant volatiles in the absence of salicylate-jasmonate antagonism |
Author(s): | Rostas M; Winter TR; Borkowski L; Zeier J; |
Address: | "Department of Botany II; University of Wurzburg; Wurzburg, Germany; Bio-Protection Research Centre; Lincoln University; Christchurch, New Zealand" |
ISSN/ISBN: | 1559-2324 (Electronic) 1559-2316 (Print) 1559-2316 (Linking) |
Abstract: | "Abiotic stress factors can interfere with the emission of herbivore-induced plant volatile organic compounds (VOCs) and thus disrupt chemical communication channels between plants and other organisms. We investigated whether copper (Cu) stress alone or in conjunction with insect damage modifies the kinetics of (1) VOCs, (2) the VOC-inducing phytohormone jasmonic acid (JA) and (3) its putative antagonist salicylic acid (SA). Hydroponically grown Zea mays exposed to 10 and 80 microM of Cu showed no increases in JA or VOC levels in the absence of herbivory. However when challenged by herbivores, Cu (80 microM) caused ROS generation in root tissues and primed for increased JA accumulation and VOC emission in leaves. SA synthesis was equally primed but higher concentrations were also apparent before insects started feeding. In contrast, plants grown at 10 microM Cu did not differ from controls. These results show that abiotic and biotic stresses result in concentration-dependent, non-additive defense responses. Further support is given to the notion that JA-SA antagonism is absent in Z. mays" |
Keywords: | "Animals Copper/*metabolism Cyclopentanes/metabolism Herbivory Insecta/physiology Oxylipins/metabolism Plant Growth Regulators/*metabolism Salicylic Acid/metabolism *Stress, Physiological Volatile Organic Compounds/*metabolism Zea mays/*physiology Zea mays;" |
Notes: | "MedlineRostas, Michael Winter, Thorsten R Borkowski, Lena Zeier, Jurgen eng Research Support, Non-U.S. Gov't 2013/03/23 Plant Signal Behav. 2013 Jun; 8(6):e24264. doi: 10.4161/psb.24264. Epub 2013 Mar 21" |