Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractModulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness    Next AbstractMachine learning in the clinical microbiology laboratory: has the time come for routine practice? »

Sci Total Environ


Title:Fe-based metal organic framework derivative with enhanced Lewis acidity and hierarchical pores for excellent adsorption of oxygenated volatile organic compounds
Author(s):Pei Y; Qin J; Wang J; Hu Y;
Address:"School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China. School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, PR China. Electronic address: huyun@scut.edu.cn"
Journal Title:Sci Total Environ
Year:2021
Volume:20210529
Issue:
Page Number:148132 -
DOI: 10.1016/j.scitotenv.2021.148132
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"A series of Fe-based metal organic framework derived materials were prepared by thermal treating MIL-100(Fe) in nitrogen atmosphere for adsorption removal of oxygenated volatile organic compounds (OVOCs) such as methanol, formaldehyde and acetone under dynamic conditions. The experimental results showed that the partially carbonized M-350 material obtained by calcining MIL-100(Fe) at 350 degrees C exhibited the best adsorption performance and high stability. The breakthrough adsorption capacity of M-350 for methanol was 61.5% higher than that of pure MIL-100 (Fe), and it was 24.7, 6.5 and 2.6 times higher than that of commercial activated carbon, ZSM-5 and SAPO-34 adsorbents, respectively. The excellent adsorption performance was attributed to the exposure of abundant coordinatively unsaturated iron metal sites acting as Lewis acid sites through high temperature calcination, which had a strong affinity for OVOCs. Meanwhile, a hierarchical porous structure and high specific surface area further promoted the adsorption. This work provides new insights into the further development of metal organic frameworks based functional materials for VOCs removal and purification"
Keywords:Adsorption Charcoal Lewis Acids *Metal-Organic Frameworks *Volatile Organic Compounds Hierarchical pores Lewis acidity MOFs-derivative OVOCs;
Notes:"MedlinePei, Yun Qin, Junxian Wang, Jun Hu, Yun eng Netherlands 2021/06/11 Sci Total Environ. 2021 Oct 10; 790:148132. doi: 10.1016/j.scitotenv.2021.148132. Epub 2021 May 29"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-09-2024