Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractNanomaterials in the Environment Acquire an 'Eco-Corona' Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies    Next AbstractGas production and migration in landfills and geological materials »

Mol Microbiol


Title:Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules
Author(s):Nasser W; Bouillant ML; Salmond G; Reverchon S;
Address:"Laboratoire de Genetique Moleculaire des Microorganismes et des Interactions Cellulaires, UMR-CNRS 5577, INSA, Villeurbanne, France. lgmm@cismibm.univ-lyon1.fr"
Journal Title:Mol Microbiol
Year:1998
Volume:29
Issue:6
Page Number:1391 - 1405
DOI: 10.1046/j.1365-2958.1998.01022.x
ISSN/ISBN:0950-382X (Print) 0950-382X (Linking)
Abstract:"The plant pathogen Erwinia chrysanthemi produces three acyl-homoserine lactones (acyl-HSLs). One has been identified as N-(3-oxohexanoyl)-homoserine lactone (OHHL), and the two others were supposed to be N (hexanoyl)-homoserine lactone (HHL) and N-(decanoyl)-homoserine lactone (DHL). The genes for a quorum-sensing signal generator (expI) and a response regulator (expR) were cloned. These genes are convergently transcribed and display high similarity to the expI-expR genes of Erwinia carotovora. ExpI is responsible for both OHHL and HHL production. Inactivation of expl had little effect on pectinase synthesis in E. chrysanthemi, as expression of only two of the pectate lyase genes, pelA and pelB, was decreased. E. chrysanthemi expR mutants still produced acyl-HSL and pectinases. However, gel shift and DNAse I footprinting experiments showed that the purified E. chrysanthemi ExpR protein binds specifically to the promoter regions of the five major pel genes. Addition of OHHL modified the ExpR-DNA bandshift profiles, indicating that ExpR interacts with OHHL and binds to DNA in different ways, depending on the OHHL concentration. Localization of the ExpR binding sites just upstream of promoter regions suggests that ExpR functions as an activator of pel expression in the presence of OHHL. The absence of a phenotype in expR mutants strongly suggests that at least an additional interchangeable ExpR homologue exists in E. chrysanthemi. Finally, transcription of expI::uidA and expR::uidA fusions is dependent on the population density, suggesting the existence of a quorum-sensing hierarchy in E. chrysanthemi. These results suggest that the expI-expR locus is part of a complex autoregulatory system that controls quorum sensing in E. chrysanthemi"
Keywords:"4-Butyrolactone/*analogs & derivatives/biosynthesis Amino Acid Sequence Bacterial Proteins/*genetics/*metabolism Base Sequence Binding Sites/genetics Cloning, Molecular DNA, Bacterial/genetics/metabolism Dickeya chrysanthemi/*genetics/*metabolism/pathogen;"
Notes:"MedlineNasser, W Bouillant, M L Salmond, G Reverchon, S eng Comparative Study Research Support, Non-U.S. Gov't England 1998/10/22 Mol Microbiol. 1998 Sep; 29(6):1391-405. doi: 10.1046/j.1365-2958.1998.01022.x"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-09-2024