Title: | Assessing the effects of a novel biostimulant to enhance leafminer resistance and plant growth on common bean |
Author(s): | Mostafa AA; El-Rahman SNA; Shehata S; Abdallah NA; Omar HS; |
Address: | "Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt. Department of Crops Technology Research, Food Technology Research Institute, Agricultural Research Centre, Giza, Egypt. Department of Horticulture, Faculty of Agriculture, Cairo University, Giza, Egypt. Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt. naglaa.abdallah@agr.cu.edu.eg. National Biotechnology Network for Experts, ASRT, Giza, Egypt. naglaa.abdallah@agr.cu.edu.eg. Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt. GMO Laboratory, Cairo University Research Park, Giza, Egypt" |
DOI: | 10.1038/s41598-021-98902-z |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "The leafminer Liriomyza trifolii is one of the major insects that affect Phaseolus vulgaris production worldwide. Novel and safe biobased stimulator compound (BSTC) with micronutrient-amino acid chelated compounds was developed from natural compounds and was used for foliar spray of P. vulgaris. Treated plants showed significantly increased in quality and productivity as well as significant reduction in leafminer infestation by close the tunnel end resulting in larvae suffocation and death. BSTC contains chemical composition that has important function in inducing immunity and resistance against insects, enhance plant growth and production. Also, HPLC showed that the assembled BSTC is rich in nucleobases than yeast extract (> 56 fold). Aminochelation zinc enhanced the rate of absorption of nutrient compounds and could participate in safe biofortification strategy. The expression of plant defense related genes under BSTC treatment revealed strong correlations between the transcription rates of defense related genes. Based on binding energies and interacting residues of six vital insect proteins, the best-docked complexes was obtained with disodium 5'-inosinate, delphinidin 3-glucoside and hyperoside. Obtained findings indicate that the foliar application of BSTC can enhance plant growth and productivity, uptake of important elements, expression of defense related genes and inhibit insect essential genes" |
Keywords: | Animals *Biological Products/chemistry/pharmacology *Diptera/drug effects/growth & development Insecta Larva/drug effects/growth & development Pest Control/*methods *Phaseolus/drug effects/growth & development/metabolism Phytochemicals/chemistry/pharmacol; |
Notes: | "MedlineMostafa, Amr A El-Rahman, Soheir N Abd Shehata, Said Abdallah, Naglaa A Omar, Hanaa S eng England 2021/10/10 Sci Rep. 2021 Oct 8; 11(1):20020. doi: 10.1038/s41598-021-98902-z" |