Title: | Comparison of the volatile organic compound recovery rates of commercial active samplers for evaluation of indoor air quality in work environments |
Author(s): | Miyake Y; Tokumura M; Wang Q; Wang Z; Amagai T; |
Address: | "Graduate School of Nutritional and Environmental Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan. ISNI: 0000 0000 9209 9298. GRID: grid.469280.1" |
DOI: | 10.1007/s11869-017-0465-0 |
ISSN/ISBN: | 1873-9318 (Print) 1873-9326 (Electronic) 1873-9318 (Linking) |
Abstract: | "The Industrial Safety and Health Law in Japan established administrative levels for volatile organic compounds (VOCs) in indoor air. In the present study, these 49 VOCs were extracted from the absorbents of commercial active samplers from Sibata Scientific Technology (carbon-bead active sampler), SKC Inc. (Anasorb CSC sorbent tube), and Gastec (bead-shaped activated carbon tube) using carbon disulfide, and the recovery rates were compared. The VOCs were added to the adsorbents at three concentration levels relative to the administrative levels (x0.5, x1, and x2). The following mean recovery rates of the 49 VOCs were obtained at the x0.5, x1, and x2 levels: 86, 93, and 92% for the Sibata sampler; 78, 82, and 84% for the SKC sampler; and 94, 93, and 90% for the Gastec sampler. With the Sibata sampler, the recovery rates of 78% (x0.5), 84% (x1), and 90% (x2) of the VOCs measured in this study were adequate (80-120%); the corresponding percentages for the SKC sampler were 67% (x0.5), 69% (x1), and 69% (x2), and those for the Gastec sampler were 92% (x0.5), 86% (x1), and 86% (x2). The effects of the octanol-water partition coefficients and vapor pressures of the VOCs on the recovery rates were investigated. The recovery rates increased with increases in the octanol-water partition coefficient and the vapor pressure and then leveled off. The recovery rates for the o-, m-, and p-cresol isomers were much lower than those obtained for other VOCs at all three concentration levels and with all samplers" |
Keywords: | Activated carbon Active sampler Indoor air Recovery rate Work environment; |
Notes: | "PubMed-not-MEDLINEMiyake, Yuichi Tokumura, Masahiro Wang, Qi Wang, Zhiwei Amagai, Takashi eng Netherlands 2017/09/25 Air Qual Atmos Health. 2017; 10(6):737-746. doi: 10.1007/s11869-017-0465-0. Epub 2017 Feb 18" |