Title: | Capturing Volatile Organic Compounds Employing Superalkali Species |
Address: | "Department of Chemistry, University of San Francisco, 2130 Fulton St, San Francisco, CA, 94117" |
ISSN/ISBN: | 1439-7641 (Electronic) 1439-4235 (Linking) |
Abstract: | "In this study, the interactions between the superalkali species Li(3) F(2) and four volatile organic compounds (VOCs), methanol, ethanol, formaldehyde, and acetaldehyde, are assessed using the CBS-QB3 composite model. Adiabatic ionization energy (AIE), adiabatic electron affinity (AEA), binding energy (BE), charge transfer (triangle upq), and highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gaps have been computed. Stronger interactions are observed between Li(3) F(2) and the aldehydes than alcohols. The smaller aldehydes show a larger BE with Li(3) F(2) than the bigger aldehydes. However, alcohol clusters do not show this trend due to their weak interactions (low BEs). Both alcohol clusters increase their binding energies as they become cations. This unexpected behavior is explained based on molecular orbital arguments" |
Keywords: | Binding energy charge transfer modelling superalkalis volatile organic compounds; |
Notes: | "PubMed-not-MEDLINEPark, Heejune Meloni, Giovanni eng 56067-UR6/American Chemical Society Petroleum Research Fund/International Research Support, Non-U.S. Gov't Germany 2018/04/19 Chemphyschem. 2018 Sep 5; 19(17):2266-2271. doi: 10.1002/cphc.201800176. Epub 2018 Jun 15" |