Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCalcium-independent calmodulin requirement for endocytosis in yeast    Next AbstractMale scent-marking pheromone of Bombus ardens ardens (Hymenoptera; Apidae) attracts both conspecific queens and males »

J Biol Chem


Title:"Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism"
Author(s):Kubler E; Mosch HU; Rupp S; Lisanti MP;
Address:"Institut fur Mikrobiologie, Georg-August-Universitat Gottingen, D-37077 Gottingen, Germany"
Journal Title:J Biol Chem
Year:1997
Volume:272
Issue:33
Page Number:20321 - 20323
DOI: 10.1074/jbc.272.33.20321
ISSN/ISBN:0021-9258 (Print) 0021-9258 (Linking)
Abstract:"The small GTP-binding protein Ras and heterotrimeric G-proteins are key regulators of growth and development in eukaryotic cells. In mammalian cells, Ras functions to regulate the mitogen-activated protein kinase pathway in response to growth factors, whereas many heterotrimeric GTP-binding protein alpha-subunits modulate cAMP levels through adenylyl cyclase as a consequence of hormonal action. In contrast, in the yeast Saccharomyces cerevisiae, it is the Ras1 and Ras2 proteins that regulate adenylyl cyclase. Of the two yeast G-protein alpha-subunits (GPA1 and GPA2), only GPA1 has been well studied and shown to negatively regulate the mitogen-activated protein kinase pathway upon pheromone stimulation. In this report, we show that deletion of the GPA2 gene encoding the other yeast G-protein alpha-subunit leads to a defect in pseudohyphal development. Also, the GPA2 gene is indispensable for normal growth in the absence of Ras2p. Both of these phenotypes can be rescued by deletion of the PDE2 gene product, which inactivates cAMP by cleavage, suggesting that these phenotypes can be attributed to low levels of intracellular cAMP. In support of this notion, addition of exogenous cAMP to the growth media was also sufficient to rescue the phenotype of a GPA2 deletion strain. Taken together, our results directly demonstrate that a G-protein alpha-subunit can regulate the growth and pseudohyphal development of S. cerevisiae via a cAMP-dependent mechanism. Heterologous expression of mammalian G-protein alpha-subunits in these yeast GPA2 deletion strains could provide a valuable tool for the mutational analysis of mammalian G-protein function in an in vivo null setting"
Keywords:Cyclic AMP/analysis/*physiology Fungal Proteins/*physiology GTP-Binding Proteins/*physiology Saccharomyces cerevisiae/*physiology;
Notes:"MedlineKubler, E Mosch, H U Rupp, S Lisanti, M P eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. 1997/08/15 J Biol Chem. 1997 Aug 15; 272(33):20321-3. doi: 10.1074/jbc.272.33.20321"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024