Title: | Moth responses to selectively fluorinated sex pheromone analogs |
Author(s): | Klun JA; Schwarz M; Wakabayashi N; Waters RM; |
Address: | "Insect Chemical Ecology Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville Agricultural Research Center, 20705-2350, Beltsville, Maryland" |
ISSN/ISBN: | 0098-0331 (Print) 0098-0331 (Linking) |
Abstract: | "Partially fluorinated analogs of the European corn borer (Ostrinia nubilalis) female sex pheromone, 11-tetradecenyl acetate (97:3Z:E), having mono- and trifluorsubstitutions at the terminal carbon of the pheromone chain, mimicked the biological activity of the pheromone, while analogs with fluorine at either side of the double bond and a pentafluoro analog were essentially inactive. Comparison of the pheromonal activity of these analogs with the previously reported activity of similarly fluorinated pheromones in five other species of moths revealed an unpredictable relationship between fluorine substitution pattern and pheromone-mimicking activity. Fluorine substitution patterns that rendered pheromonal analogs biologically inactive in the European corn borer had no detrimental influence upon pheromonal activity in other species and the converse was also true. This is evidence that the relative importance of electronic qualities of sites within a pheromone molecule differ from species to species. Furthermore, it indicates that the biochemical components (pheromone receptor proteins, binding proteins, and enzymes) that make up moth olfactory chemosensory systems must also vary structurally from species to species, despite the fact that they are involved in olfactory sensing of compounds having very similar chemical structure" |
Notes: | "PubMed-not-MEDLINEKlun, J A Schwarz, M Wakabayashi, N Waters, R M eng 1994/10/01 J Chem Ecol. 1994 Oct; 20(10):2705-19. doi: 10.1007/BF02036202" |