Title: | A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes |
Address: | "Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Korea" |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129 g m(-3)) with increasing puff velocity (0.05 to 1 L min(-1)). A strong correlation existed between sampling volume and consumed solution mass (R(2) = 0.9972 +/- 0.0021 (n = 4)). In the EC solution, acetic acid was considerably high (25.8 mug mL(-1)), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24 +/- 0.15 mug mL(-1) (n = 4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138 +/- 250 mug m(-3)). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL(-1)) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid)" |
Notes: | "PubMed-not-MEDLINEKim, Yong-Hyun Kim, Ki-Hyun eng Research Support, Non-U.S. Gov't England 2015/11/11 Sci Rep. 2015 Nov 10; 5:16383. doi: 10.1038/srep16383" |