Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAlternative developmental and transcriptomic responses to host plant water limitation in a butterfly metapopulation    Next AbstractControl of mating and development in Ustilago maydis »

Planta


Title:Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore
Author(s):Kahl J; Siemens DH; Aerts RJ; Gabler R; Kuhnemann F; Preston CA; Baldwin IT;
Address:"Max-Planck-Institut fur Chemische Okologie, Tatzendpromenade 1A, 07745 Jena, Germany"
Journal Title:Planta
Year:2000
Volume:210
Issue:2
Page Number:336 - 342
DOI: 10.1007/PL00008142
ISSN/ISBN:0032-0935 (Print) 0032-0935 (Linking)
Abstract:"Herbivory induces both direct and indirect defenses in plants; however, some combinations of these defenses may not be compatible. The jasmonate signal cascade activated both direct (nicotine accumulations) and indirect (mono- and sesquiterpene emissions) whole-plant defense responses in the native tobacco Nicotiana attenuata Torr. Ex Wats. Nicotine accumulations were proportional to the amount of leaf wounding and the resulting increases in jasmonic acid (JA) concentrations. However, when larvae of the nicotine-tolerant herbivore, Manduca sexta, fed on plants or their oral secretions were applied to leaf punctures, the normal wound response was dramatically altered, as evidenced by large (4- to 10-fold) increases in the release of (i) volatile terpenoids and (ii) ethylene, (iii) increased (4- to 30-fold) accumulations of endogenous JA pools, but (iv) decreased or unchanged nicotine accumulations. The ethylene release, which was insensitive to inhibitors of induced JA accumulation, was sufficient to account for the attenuated nicotine response. Applications of ethylene and ethephon suppressed the induced nicotine response and pre-treatment of plants with a competitive inhibitor of ethylene receptors, 1-methylcyclopropene, restored the full nicotine response. This ethylene burst, however, did not inhibit the release of volatile terpenoids. Because parasitoids of Manduca larvae are sensitive to the dietary intake of nicotine by their hosts, this ethylene-mediated switching from direct to a putative indirect defense may represent an adaptive tailoring of a plant's defense response"
Keywords:Acetates/pharmacology Analysis of Variance Animals Cyclopentanes/metabolism/pharmacology Cyclopropanes/pharmacology Ethylenes/*metabolism/pharmacology Indoleacetic Acids/pharmacology Manduca/growth & development/*physiology Nicotine/metabolism Organophosp;
Notes:"MedlineKahl, J Siemens, D H Aerts, R J Gabler, R Kuhnemann, F Preston, C A Baldwin, I T eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Germany 2000/02/09 Planta. 2000 Jan; 210(2):336-42. doi: 10.1007/PL00008142"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-09-2024