Title: | Experimental Proof of a Transformation Product Trap Effect with a Membrane Photocatalytic Process for VOC Removal |
Author(s): | Gerardin F; Simard J; Favre E; |
Address: | "Institut National de Recherche et de Securite, Rue du Morvan, CS60027, CEDEX, 54519 Vandoeuvre, France. Laboratoire Reactions et Genie des Procedes, UMR 7274 CNRS Universite de Lorraine, 1 Rue Grandville BP20451, CEDEX, 54001 Nancy, France" |
DOI: | 10.3390/membranes12090900 |
ISSN/ISBN: | 2077-0375 (Print) 2077-0375 (Electronic) 2077-0375 (Linking) |
Abstract: | "The decomposition of volatile organic compounds by photocatalytic oxidation (PCO) has been widely studied. However, the technological development of this oxidative technique has to address how to handle the formation of transformation products. The work presented here investigates the original combination of a dense membrane separation process and PCO to intensify the trapping and reduction of PCO transformation products. Specific monitoring of toluene PCO transformation products, such as benzene and formaldehyde, in the outflow of both permeate and retentate compartments was proposed. The influence of operating parameters on the process, i.e., light intensity, pressure, membrane type, and catalyst mass, was also studied. The results reveal that membrane separation-PCO hybridization is particularly effective for reducing the presence of benzene and formaldehyde in the effluent treated. The benzene concentration in the outflow of the hybrid module can be reduced by a factor of 120 compared to that observed during the PCO of toluene alone" |
Keywords: | VOC removal membrane separation photocatalysis safety transformation products; |
Notes: | "PubMed-not-MEDLINEGerardin, Fabien Simard, Julien Favre, Eric eng Switzerland 2022/09/23 Membranes (Basel). 2022 Sep 19; 12(9):900. doi: 10.3390/membranes12090900" |