Title: | "Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae)" |
Author(s): | Feng JL; Zhang J; Yang J; Zou LP; Fang TT; Xu HL; Cai QN; |
Address: | "College of Plant Protection, China Agricultural University, Beijing 100193, China. MOA Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China" |
DOI: | 10.1017/S0007485321000237 |
ISSN/ISBN: | 1475-2670 (Electronic) 0007-4853 (Linking) |
Abstract: | "Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control" |
Keywords: | Animals Aphids/*drug effects/growth & development Plant Leaves/chemistry Salicylic Acid/*pharmacology Seedlings Triticum/enzymology/immunology/*parasitology Defence-related enzymes Sitobion avenae Triticum aestivum phenolic acid salicylic acid; |
Notes: | "MedlineFeng, Jian-Lu Zhang, Jie Yang, Jun Zou, Ling-Ping Fang, Ting-Ting Xu, Huan-Li Cai, Qing-Nian eng England 2021/04/06 Bull Entomol Res. 2021 Oct; 111(5):544-552. doi: 10.1017/S0007485321000237. Epub 2021 Apr 5" |