Title: | In vitro inhalation bioaccessibility and health risk assessment of difenoconazole in atmosphere |
Author(s): | Fang K; Xiang YX; Wang H; Li MK; Jiang SY; Liu CJ; Yang X; Wei SW; Xiao JJ; Shi YH; Cao HQ; |
Address: | "School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China. Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China. Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China. School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China" |
ISSN/ISBN: | 1526-4998 (Electronic) 1526-498X (Linking) |
Abstract: | "BACKGROUND: It is necessary to assess the risk of pesticide inhalation in people around farmland because inhalation is one of the ways pesticides cause human health risks. This paper purposed to identify the inhalation risk of difenoconazole on humans by dose-response and exposure assessment. RESULTS: In the field simulation application, the respiratory exposure of the people around farmland ranges from 71 ng/m(3) to 430 ng/m(3) . Using the response surface methodology, the maximum bioaccessibility of difenoconazole in the three simulated lung fluids was 35.33% gamble's solution (GS), 34.12% artificial lysosomal fluid (ALF), and 42.06% simulated interstitial lung fluid (SLF), respectively. Taking the proliferation activity of A549 cell model as the endpoint, the benchmark dose limit (BMDL) and benchmark dose (BMD) of difenoconazole on A549 cells were 16.36 and 5.60 mg/kg, respectively. The margin of exposure of difenoconazole in GS, ALF and SLF were respectively 8.66x10(5) -5.28x10(6) , 8.97x10(5) -5.47x10(6) and 7.28x10(5) -4.44x10(6) . CONCLUSION: The results of the risk assessment indicate that under any circumstances, applying difenoconazole is safe for people around farmland. However, a fan-shaped nozzle, wettable powder and higher inhalation height increase the risk of inhalation. This article is protected by copyright. All rights reserved" |
Keywords: | Pesticide inhalation bioaccessibility risk assessment toxicity description; |
Notes: | "PublisherFang, Ke Xiang, Yu-Xin Wang, Han Li, Ming-Kun Jiang, Si-Yuan Liu, Chen-Jun Yang, Xin Wei, Su-Wan Xiao, Jin-Jing Shi, Yan-Hong Cao, Hai-Qun eng England 2023/10/05 Pest Manag Sci. 2023 Oct 4. doi: 10.1002/ps.7811" |