Title: | Off-Site Flux Estimates of Volatile Organic Compounds from Oil and Gas Production Facilities Using Fast-Response Instrumentation |
Author(s): | Edie R; Robertson AM; Soltis J; Field RA; Snare D; Burkhart MD; Murphy SM; |
Address: | "Department of Atmospheric Science , University of Wyoming , 1000 East University Avenue , Laramie , Wyoming 82071 , United States. All4, Inc. , Kimberton , Pennsylvania 19442 , United States" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Flux estimates of volatile organic compounds (VOCs) from oil and gas (O&G) production facilities are fundamental in understanding hazardous air pollutant concentrations and ozone formation. Previous off-site emission estimates derive fluxes by ratioing VOCs measured in canisters to methane fluxes measured in the field. This study uses the Environmental Protection Agency's Other Test Method 33A (OTM 33A) and a fast-response proton transfer reaction mass spectrometer to make direct measurements of VOC emissions from O&G facilities in the Upper Green River Basin, Wyoming. We report the first off-site direct flux estimates of benzene, toluene, ethylbenzene, and xylenes from upstream O&G production facilities and find that these estimates can vary significantly from flux estimates derived using both the canister ratio technique and from the emission inventory. The 32 OTM 33A flux estimates had arithmetic mean (and 95% CI) as follows: benzene 17.83 (0.22, 98.05) g/h, toluene 34.43 (1.01, 126.76) g/h, C8 aromatics 37.38 (1.06, 225.34) g/h, and methane 2.3 (1.7, 3.1) kg/h. A total of 20% of facilities measured accounted for approximately 67% of total BTEX emissions. While this heavy tail is less dramatic than previous observations of methane in other basins, it is more prominent than that predicted by the emission inventory" |
Keywords: | *Air Pollutants Environmental Monitoring *Ozone *Volatile Organic Compounds Wyoming; |
Notes: | "MedlineEdie, Rachel Robertson, Anna M Soltis, Jeffrey Field, Robert A Snare, Dustin Burkhart, Matthew D Murphy, Shane M eng Research Support, Non-U.S. Gov't 2019/11/13 Environ Sci Technol. 2020 Feb 4; 54(3):1385-1394. doi: 10.1021/acs.est.9b05621. Epub 2020 Jan 24" |