Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIncreased levels of urine volatile organic compounds are associated with diabetes risk and impaired glucose homeostasis    Next AbstractA donor-pi-acceptor aggregation-induced emission compound serving as a portable fluorescent sensor for detection and differentiation of methanol and ethanol in the gas phase »

Mol Cell Proteomics


Title:Describing biological protein interactions in terms of protein states and state transitions: the LiveDIP database
Author(s):Duan XJ; Xenarios I; Eisenberg D;
Address:"Howard Hughes Medical Institute, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, University of California, Los Angeles, Los Angeles, California 90095-1570, USA"
Journal Title:Mol Cell Proteomics
Year:2002
Volume:1
Issue:2
Page Number:104 - 116
DOI: 10.1074/mcp.m100026-mcp200
ISSN/ISBN:1535-9476 (Print) 1535-9476 (Linking)
Abstract:"Biological protein-protein interactions differ from the more general class of physical interactions; in a biological interaction, both proteins must be in their proper states (e.g. covalently modified state, conformational state, cellular location state, etc.). Also in every biological interaction, one or both interacting molecules undergo a transition to a new state. This regulation of protein states through protein-protein interactions underlies many dynamic biological processes inside cells. Therefore, understanding biological interactions requires information on protein states. Toward this goal, DIP (the Database of Interacting Proteins) has been expanded to LiveDIP, which describes protein interactions by protein states and state transitions. This additional level of characterization permits a more complete picture of the protein-protein interaction networks and is crucial to an integrated understanding of genome-scale biology. The search tools provided by LiveDIP, Pathfinder, and Batch Search allow users to assemble biological pathways from all the protein-protein interactions collated from the scientific literature in LiveDIP. Tools have also been developed to integrate the protein-protein interaction networks of LiveDIP with large scale genomic data such as microarray data. An example of these tools applied to analyzing the pheromone response pathway in yeast suggests that the pathway functions in the context of a complex protein-protein interaction network. Seven of the eleven proteins involved in signal transduction are under negative or positive regulation of up to five other proteins through biological protein-protein interactions. During pheromone response, the mRNA expression levels of these signaling proteins exhibit different time course profiles. There is no simple correlation between changes in transcription levels and the signal intensity. This points to the importance of proteomic studies to understand how cells modulate and integrate signals. Integrating large scale, yeast two-hybrid data with mRNA expression data suggests biological interactions that may participate in pheromone response. These examples illustrate how LiveDIP provides data and tools for biological pathway discovery and pathway analysis"
Keywords:"*Databases, Protein Gene Expression Profiling/statistics & numerical data Oligonucleotide Array Sequence Analysis/statistics & numerical data Protein Binding Proteins/chemistry/genetics/*metabolism Proteome/chemistry/genetics/*metabolism Two-Hybrid System;"
Notes:"MedlineDuan, Xiaoqun Joyce Xenarios, Ioannis Eisenberg, David eng Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. 2002/07/04 Mol Cell Proteomics. 2002 Feb; 1(2):104-16. doi: 10.1074/mcp.m100026-mcp200"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 17-11-2024