Title: | "Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS" |
Author(s): | Dong W; Hu R; Long Y; Li H; Zhang Y; Zhu K; Chu Z; |
Address: | "Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China. Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China. Electronic address: longyuzhou6090@126.com. Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China. Electronic address: xyzhehe@126.com" |
DOI: | 10.1016/j.foodchem.2018.08.068 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "In this study, room-temperature drying, solar drying, heat pump drying (HPD), hot-air drying, and freeze drying were applied to investigate the volatile profiles and taste properties of roasted coffee beans by using electronic nose, electronic tongue, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results indicated that the drying process markedly affected pH, total titratable acidity, total solids, and total soluble solids. Significant differences existed among all samples based on drying method; and the HPD method was superior for preserving ketones, phenols, and esters. Principal component analysis (PCA) combined with E-nose and E-tongue radar charts as well as the fingerprint of HS-SPME-GC-MS could clearly discriminate samples from different drying methods, with results obtained from hierarchical cluster analysis (the Euclidean distance is 0.75) being in agreement with those of PCA. These findings may provide a theoretical basis for the dehydration of coffee beans and other similar thermo-sensitive agricultural products" |
Keywords: | Cluster Analysis Coffee/*chemistry/metabolism Desiccation/*methods Electronic Nose *Gas Chromatography-Mass Spectrometry Hot Temperature Humans Hydrogen-Ion Concentration Principal Component Analysis Solid Phase Microextraction Taste/*physiology Volatile; |
Notes: | "MedlineDong, Wenjiang Hu, Rongsuo Long, Yuzhou Li, Hehe Zhang, Yanjun Zhu, Kexue Chu, Zhong eng England 2018/10/13 Food Chem. 2019 Jan 30; 272:723-731. doi: 10.1016/j.foodchem.2018.08.068. Epub 2018 Aug 17" |